23 research outputs found

    IHC-based Ki67 as response biomarker to tamoxifen in breast cancer window trials enrolling premenopausal women

    Get PDF
    Window studies are gaining traction to assess (molecular) changes in short timeframes. Decreased tumor cell positivity for the proliferation marker Ki67 is often used as a proxy for treatment response. Immunohistochemistry (IHC)-based Ki67 on tissue from neo-adjuvant trials was previously reported to be predictive for long-term response to endocrine therapy for breast cancer in postmenopausal women, but none of these trials enrolled premenopausal women. Nonetheless, the marker is being used on this subpopulation. We compared pathologist assessed IHC-based Ki67 in samples from pre- and postmenopausal women in a neo-adjuvant, endocrine therapy focused trial (NCT00738777), randomized between tamoxifen, anastrozole, or fulvestrant. These results were compared with (1) IHC-based Ki67 scoring by AI, (2) mitotic figures, (3) mRNA-based Ki67, (4) five independent gene expression signatures capturing proliferation, and (5) blood levels for tamoxifen and its metabolites as well as estradiol. Upon tamoxifen, IHC-based Ki67 levels were decreased in both pre- and postmenopausal breast cancer patients, which was confirmed using mRNA-based cell proliferation markers. The magnitude of decrease of Ki67 IHC was smaller in pre- versus postmenopausal women. We found a direct relationship between post-treatment estradiol levels and the magnitude of the Ki67 decrease in tumors. These data suggest IHC-based Ki67 may be an appropriate biomarker for tamoxifen response in premenopausal breast cancer patients, but anti-proliferative effect size depends on estradiol levels.</p

    Plasmamembrane Organization in Signaling

    No full text

    Molecular Counting in Traction Force Microscopy

    Get PDF

    Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells

    Get PDF
    Aggregation of α-synuclein has been linked to both familial and sporadic Parkinson's disease. Recent studies suggest that α-synuclein aggregates may spread from cell to cell and raise questions about the propagation of neurodegeneration. While continuous progress has been made characterizing α-synuclein aggregates in vitro, there is a lack of information regarding the structure of these species inside the cells. Here, we use confocal fluorescence microscopy in combination with direct stochastic optical reconstruction microscopy, dSTORM, to investigate α-synuclein uptake when added exogenously to SH-SY5Y neuroblastoma cells, and to probe in situ morphological features of α-synuclein aggregates with near nanometer resolution. We demonstrate that using dSTORM, it is possible to follow noninvasively the uptake of extracellularly added α-synuclein aggregates by the cells. Once the aggregates are internalized, they move through the endosomal pathway and accumulate in lysosomes to be degraded. Our dSTORM data show that α-synuclein aggregates remain assembled after internalization and they are shortened as they move through the endosomal pathway. No further aggregation was observed inside the lysosomes as speculated in the literature, nor in the cytoplasm of the cells. Our study thus highlights the super-resolution capability of dSTORM to follow directly the endocytotic uptake of extracellularly added amyloid aggregates and to probe the morphology of in situ protein aggregates even when they accumulate in small vesicular compartments

    Single-molecule imaging and PICS analysis (S1 Fig Data).

    No full text
    <p><i>A</i>: Signal of individual eYFP-GR molecules on an emCCD camera. <i>B</i>: The signal of an individual molecule is fitted to a Gaussian yielding the position, the width and the strength of the signal. <i>C</i>: Distance calculation between molecules in subsequent frames. <i>D</i>: Cumulative distribution function (cdf) of distances of molecules in subsequent frames correlated by diffusion.</p
    corecore