17,651 research outputs found
Molecular dynamics simulations of the Johari-Goldstein relaxation in a molecular liquid
Molecular dynamics simulations (mds) were carried out to investigate the
reorientational motion of a rigid (fixed bond length), asymmetric diatomic
molecule in the liquid and glassy states. In the latter the molecule reorients
via large-angle jumps, which we identify with the Johari-Goldstein (JG)
dynamics. This relaxation process has a broad distribution of relaxation times,
and at least deeply in the glass state, the mobility of a given molecule
remains fixed over time; that is, there is no dynamic exchange among molecules.
Interestingly, the JG relaxation time for a molecule does not depend on the
local density, although the non-ergodicity factor is weakly correlated with the
packing efficiency of neighboring molecules. In the liquid state the frequency
of the JG process increases significantly, eventually subsuming the slower
alpha-relaxation. This evolution of the JG-motion into structural relaxation
underlies the correlation of many properties of the JG- and alpha-dynamics.Comment: 12 pages, 6 figure
Time-dependent Ginzburg-Landau model for light-induced superconductivity in the cuprate LESCO
Cavalleri and coworkers have discovered evidence of light-induced
superconductivity and related phenomena in several different materials. Here we
suggest that some features may be naturally interpreted using a time-dependent
Ginzburg-Landau model. In particular, we focus on the lifetime of the transient
state in LaEuSrCuO (LESCO), which is
remarkably long below about 25 K, but exhibits different behavior at higher
temperature.Comment: 5 pages, accepted by European Journal of Physics: Special Topic
Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment
The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease
Analytic Gradients for Complete Active Space Pair-Density Functional Theory
Analytic gradient routines are a desirable feature for quantum mechanical
methods, allowing for efficient determination of equilibrium and transition
state structures and several other molecular properties. In this work, we
present analytical gradients for multiconfiguration pair-density functional
theory (MC-PDFT) when used with a state-specific complete active space
self-consistent field reference wave function. Our approach constructs a
Lagrangian that is variational in all wave function parameters. We find that
MC-PDFT locates equilibrium geometries for several small- to medium-sized
organic molecules that are similar to those located by complete active space
second-order perturbation theory but that are obtained with decreased
computational cost
Economics knowledge, attitudes and experience of student teachers in Scotland
There is a move away from teaching economics as a separate subject in Scotland. It is now mainly taught within Business Management courses in upper secondary school and is embedded within several subject areas in both primary and early secondary curricula, a move that is in step with broader curricular aims to break down barriers among subjects. This writing discusses the need for clearly situated teaching and learning of economics, provided by teachers provided by teachers who have sufficient background knowledge to devise effective contexts for learning, whether or not it is taught as a discrete subject. The results of a survey of student teachers' levels of economic literacy are analysed and recommendations made for the preparation of teachers to deal effectively with embedded approaches to teaching about economics
Laminar firing and membrane dynamics in four visual areas exposed to two objects moving to occlusion
It is not known how visual cortical neurons react to several moving objects and how their firing to the motion of one object is affected by neurons firing to another moving object. Here we combine imaging of voltage sensitive dye (VSD) signals, reflecting the population membrane potential from ferret visual areas 17, 18, 19, and 21, with laminar recordings of multiunit activity, (MUA), when two bars moved toward each other in the visual field, occluded one another, and continued on in opposite directions. Two zones of peak MUA, mapping the bars' motion, moved toward each other along the area 17/18 border, which in the ferret maps the vertical meridian of the field of view. This was reflected also in the VSD signal, at both the 17/18 border as well as at the 19/21 border with a short delay. After some 125 ms at the area 19/21 border, the VSD signal increased and became elongated in the direction of motion in front of both of the moving representations. This was directly followed by the phase of the signal reversing and travelling back from the 19/21 border toward the 17/18 border, seemingly without respect for retinotopic boundaries, where it arrived at 150 ms after stimulus onset. At this point the VSD signal in front of the moving bar representations along the 17/18 border also increased and became elongated in the direction of object motion; the signal now being the linear sum of what has been observed in response to single moving bars. When the neuronal populations representing the bars were some 600 μm apart on the cortex, the dye signal and laminar MUA decreased strongly, with the MUA scaling to that of a single bar during occlusion. Despite a short rebound of the dye signal and MUA, the MUA after the occlusion was significantly depressed. The interactions between the neuronal populations mapping the bars' position, and the neurons in between these populations were, apart from 19/21 to 17/18 interaction, mainly lateral-horizontal; first excitatory and inducing firing at the site of future occlusion, then inhibitory just prior to occlusion. After occlusion the neurons that had fired already to the first bar showed delayed and prolonged inhibition in response to the second bar. Thus, the interactions that were particular to the occlusion condition in these experiments were local and inhibitory at short cortical range, and delayed and inhibitory after the occlusion when the bars moved further apart
Thermodynamic Scaling of the Viscosity of Van Der Waals, H-Bonded, and Ionic Liquids
Viscosities and their temperature, T, and volume, V, dependences are reported
for 7 molecular liquids and polymers. In combination with literature viscosity
data for 5 other liquids, we show that the superpositioning of relaxation times
for various glass-forming materials when expressed as a function of TV^g, where
the exponent g is a material constant, can be extended to the viscosity. The
latter is usually measured to higher temperatures than the corresponding
relaxation times, demonstrating the validity of the thermodynamic scaling
throughout the supercooled and higher T regimes. The value of g for a given
liquid principally reflects the magnitude of the intermolecular forces (e.g.,
steepness of the repulsive potential); thus, we find decreasing g in going from
van der Waals fluids to ionic liquids. For strongly H-bonded materials, such as
low molecular weight polypropylene glycol and water, the superpositioning
fails, due to the non-trivial change of chemical structure (degree of
H-bonding) with thermodynamic conditions.Comment: 16 pages 7 figure
Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field
We examine the motion in Schwarzschild spacetime of a point particle endowed
with a scalar charge. The particle produces a retarded scalar field which
interacts with the particle and influences its motion via the action of a
self-force. We exploit the spherical symmetry of the Schwarzschild spacetime
and decompose the scalar field in spherical-harmonic modes. Although each mode
is bounded at the position of the particle, a mode-sum evaluation of the
self-force requires regularization because the sum does not converge: the
retarded field is infinite at the position of the particle. The regularization
procedure involves the computation of regularization parameters, which are
obtained from a mode decomposition of the Detweiler-Whiting singular field;
these are subtracted from the modes of the retarded field, and the result is a
mode-sum that converges to the actual self-force. We present such a computation
in this paper. There are two main aspects of our work that are new. First, we
define the regularization parameters as scalar quantities by referring them to
a tetrad decomposition of the singular field. Second, we calculate four sets of
regularization parameters (denoted schematically by A, B, C, and D) instead of
the usual three (A, B, and C). As proof of principle that our methods are
reliable, we calculate the self-force acting on a scalar charge in circular
motion around a Schwarzschild black hole, and compare our answers with those
recorded in the literature.Comment: 38 pages, 2 figure
The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and minimum important difference
The response characteristics of the 6 minute walk test (6MWT) in studies of idiopathic pulmonary fibrosis (IPF) are only poorly understood, and the change in walk distance that constitutes the minimum important difference (MID) over time is unknown
- …