32 research outputs found

    Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017.

    Get PDF
    BACKGROUND Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemiological foci. The objective of this study was to provide updated data on the evolution of vector bionomics and malaria transmission patterns in the equatorial forest region of Cameroon over the period 2000-2017, during which LLIN coverage has increased substantially. METHODS The study was conducted in Olama and Nyabessan, two villages situated in the equatorial forest region. Mosquito collections from 2016-2017 were compared to those of 2000-2001. Mosquitoes were sampled using both human landing catches and indoor sprays, and were identified using morphological taxonomic keys. Specimens belonging to the An. gambiae complex were further identified using molecular tools. Insecticide resistance bioassays were undertaken on An. gambiae to assess the susceptibility levels to both permethrin and deltamethrin. Mosquitoes were screened for Plasmodium falciparum infection and blood-feeding preference using the ELISA technique. Parasitological surveys in the population were conducted to determine the prevalence of Plasmodium infection using rapid diagnostic tests. RESULTS A change in the species composition of sampled mosquitoes was recorded between the 2000-2001 collections and those of 2016-2017. A drop in the density of the local primary vectors An. nili and An. moucheti in the forest region was recorded, whereas there was an increase in the density of An. gambiae (s.l.), An. marshallii, An. ziemannii and An. paludis. A change in the biting behaviour from indoor to outdoor was recorded in Olama. Very few indoor resting mosquitoes were collected. A change in the night biting cycle was recorded with mosquitoes displaying a shift from night biting to late evening/early in the night. Several mosquitoes were found positive for Plasmodium infection, thus sustaining continuous transmission of malaria in both sites. Reduction of malaria transmission in Nyabessan was lower than that seen in Olama and associated with deforestation and the construction of a dam that may have enabled a more efficient vector, An. gambiae (s.l.), to invade the area. A high level of resistance to pyrethroids (permethrin and deltamethrin) was detected for An. gambiae in both sites. High parasite prevalence was recorded in both sites, with children of 0-16 years being the most affected. In both Olama and Nyabessan, bed net usage appeared to correlate to protection against malaria infection. CONCLUSIONS The study shows important changes in the bionomics of vector populations and malaria transmission patterns in the equatorial forest region. The changes call for more concerted efforts to address challenges such as insecticide resistance, environmental modifications or behavioural changes affecting the performance of current control measures

    Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon.

    Get PDF
    To identify potential sylvatic, urban and bridge-vectors that can be involved in current or future virus spillover from wild to more urbanised areas, entomological field surveys were conducted in rural, peri-urban and urban areas spanning the rainy and dry seasons in western Cameroon. A total of 2650 mosquitoes belonging to 37 species and eight genera were collected. Mosquito species richness was significantly influenced by the specific combination of the habitat type and the season. The highest species richness was found in the peri-urban area (S = 30, Chao1 = 121 ± 50.63, ACE = 51.97 ± 3.88) during the dry season (S = 28, Chao1 = 64 ± 25.7, ACE = 38.33 ± 3.1). Aedes (Ae.) africanus and Culex (Cx.) moucheti were only found in the rural and peri-urban areas, while Cx. pipiens s.l. and Ae. aegypti were only found in the urban area. Cx. (Culiciomyia) spp., Cx. duttoni and Ae. albopictus were caught in the three habitat types. Importantly, approximately 52% of the mosquito species collected in this study have been implicated in the transmission of diverse arboviruses. This entomological survey provides a catalogue of the different mosquito species that may be involved in the transmission of arboviruses. Further investigations are needed to study the vectorial capacity of each mosquito species in arbovirus transmission

    Knowledge, attitudes, and practices regarding malaria control among communities living in the south Cameroon forest region.

    Get PDF
    This study assessed knowledge, attitudes, and practices (KAP) regarding malaria among communities living in the equatorial forest region of south Cameroon. The study was conducted in Olama and Nyabessan. Interviews were undertaken using a semi-structured questionnaire for data collection on KAP, while malaria rapid diagnostic testing, using SD BIOLINE kits, was employed for malaria parasite detection. In total, 186 heads of households (HoH), comprising 105 (56.45%) males and 81 (43.45%) females, were interviewed. The majority of HoH demonstrated good knowledge of malaria (86.56%;  = 161) and control measures, with a high proportion of long-lasting insecticidal net (LLIN) ownership (96.8%;  = 180). More than two-thirds (81.1%;  = 151) of households owned at least one LLIN for two people. The majority of HoH (85.40%) declared visiting hospitals or clinics in cases of suspected malaria. Malaria parasite prevalence was high in the two study sites (63.9% in Nyabessan and 48.65% in Olama), and varied according to age, house type, and sleeping time. The study indicated that despite good knowledge of malaria, high possession and utilization of control measures by population, transmission of malaria still persist in the area. The study stress the need for implementing additional control measures to improve the fight against malaria in the area

    Status of Insecticide Resistance and Its Mechanisms in and Populations from Forest Settings in South Cameroon.

    Get PDF
    A key factor affecting malaria vector control efforts in Cameroon is the rapid expansion of insecticide resistance in s.l ) populations; however, mechanisms involved in insecticide resistance in forest mosquito populations are still not well documented yet. The present study was conducted to screen molecular mechanisms conferring insecticide resistance in s.l. populations from the South Cameroon forest region. WHO bioassays were conducted with F0 females aged three to four days from forest (Sangmelima, Nyabessan, and Mbandjock) and urban sites (Yaoundé (Bastos and Nkolondom)), against pyrethroids (permethrin 0.75% and deltamethrin 0.05%) and carbamates (bendiocarb 0.1%). Members of the s.l. species complex were identified using molecular diagnostic tools. TaqMan assays were used to screen for target site mutations. The expression profiles of eight genes implicated in insecticide resistance were assessed using RT-qPCR. Cuticle hydrocarbon lipids were measured to assess their potential implication in insecticide resistance. Both and were detected. was highly prevalent in Sangmelima, Nyabessan, Mbandjock, and Nkolondom. was the only species found in the Yaoundé city center (Bastos). Low mortality rate to both pyrethroids and bendiocarb was recorded in all sites. High frequency of L1014F allele (75.32-95.82%) and low frequencies of L1014S (1.71-23.05%) and N1575Y (5.28-12.87%) were recorded. The G119S mutation (14.22-35.5%) was detected for the first time in populations from Cameroon. This mutation was rather absent from populations. The detoxification genes , , , , as well as which catalyzes epicuticular hydrocarbon biosynthesis, were found to be overexpressed in at least one population. The total cuticular hydrocarvbon content, a proxy of cuticular resistance, did not show a pattern associated with pyrethroid resistance in these populations. The rapid emergence of multiple resistance mechanisms in s.l. population from the South Cameroon forest region is of big concern and could deeply affect the sustainability of insecticide-based interventions strategies in this region

    Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon

    Get PDF
    The contribution of Anopheles funestus to malaria transmission in the urban environment is still not well documented. The present study assesses the implication of An. funestus in malaria transmission in two districts, Nsam and Mendong, in the city of Yaoundé. Adult mosquitoes were collected using Centers for Disease Control and Prevention miniature light traps (CDC-LT) and human landing catches from April 2017 to March 2018 and were identified morphologically to the species level. Those belonging to the Anopheles gambiae complex and to the Anopheles funestus group were further processed by PCR to identify members of each complex/group. Anopheline mosquitoes were analysed to determine their infection status using an enzyme-linked immunosorbent assay. Bioassays were conducted with 2–5-day-old female Anopheles funestus and An. gambiae s.l. to determine their susceptibility to permethrin, deltamethrin and dichlorodiphenyltrichloroethane (DDT). Six anopheline species were collected in the peri-urban district of Mendong: Anopheles gambiae, An. coluzzii, An. funestus, An. leesoni, An. ziemanni and An. marshallii; only four out of the six were recorded in Nsam. Of the two members of the Anopheles gambiae complex collected, An. coluzzii was the most prevalent. Anopheles coluzzii was the most abundant species in Nsam, while An. funestus was the most abundant in Mendong. Both Anopheles funestus and An. gambiae s.l. were found to be infected with human Plasmodium at both sites, and both were found to be resistant to DDT, permethrin, and deltamethrin. This study confirms the participation of An. funestus in malaria transmission in Yaoundé and highlights the need to also target this species for sustainable control of malaria transmission

    Increased prevalence of insecticide resistance in Anopheles coluzzii populations in the city of Yaoundé, Cameroon and influence on pyrethroid-only treated bed net efficacy

    Get PDF
    In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé

    Assessment of Dengue and Chikungunya Infections among Febrile Patients Visiting Four Healthcare Centres in Yaoundé and Dizangué, Cameroon

    Get PDF
    Dengue and chikungunya are now widely distributed in Cameroon, but there is still not enough information on their prevalence in different epidemiological settings. This study was undertaken to assess the prevalence of dengue and chikungunya in both urban and rural settings in Cameroon using three diagnostic tools. From December 2019 to September 2021, willing febrile (temperature >38 °C) outpatients visiting four healthcare facilities in the cities of Yaoundé and Dizangué were screened for dengue, and chikungunya. Clinical features of patient were recorded in a form, and their blood samples were analysed using real-time reverse transcriptase-polymerase chain reaction (rtRT-PCR), rapid diagnostic tests (RDTs) and enzyme-linked immuno-sorbent assays (ELISA). Odds ratios were used to determine the level of association between socio-demographic factors, clinical features, and infection status. The Kappa coefficient permitted to assess the level of agreement between RDTs and ELISA. Overall, 301 febrile patients were recruited in the study: 198 in Yaoundé and 103 in Dizangué. The prevalence of infection varied with the diagnostic tool used. For dengue diagnostics, 110 patients were positive to rtRT-PCR: 90 (45.45%) in Yaoundé, and 20 (19.42%) in Dizangué. The prevalence of dengue IgM using ELISA varied from 22.3% in Dizangué to 30.8% in Yaoundé. Dengue IgM rate using RDTs was 7.6% in Yaoundé and 3.9% in Dizangué. For chikungunya, one (0.5%) patient (Yaoundé, suburb) was positive to rtRT-PCR. The prevalence of chikungunya IgM according to ELISA varied from 18.4% in Dizangué to 21.7% in Yaoundé, while it was 4.5% in Yaoundé and 12.6% in Dizangué with RDTs. Only abdominal and retro-orbital pains were significantly associated with acute dengue infection. All four dengue serotypes were recorded, with a predominance of DENV-3 (35.45%) and DENV-4 (25.45%). Rapid Diagnostic Tests for either chikungunya or dengue displayed very poor sensitivity. This study further confirms the high endemicity of both dengue and chikungunya in Yaoundé and Dizangué. These data stress the need for active surveillance and the implementation of vector control measures to prevent the occurrence of outbreaks across the country

    An update on the mosquito fauna and mosquito-borne diseases distribution in Cameroon

    Get PDF
    The expansion of mosquito-borne diseases such as dengue, yellow fever, and chikungunya in the past 15 years has ignited the need for active surveillance of common and neglected mosquito-borne infectious diseases. The surveillance should be designed to detect diseases and to provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public health consequences can occur. Mosquitoes are important vectors of human and animal pathogens, and knowledge on their biodiversity and distribution in the Afrotropical region is needed for the development of evidence-based vector control strategies. Following a comprehensive literature search, an inventory of the diversity and distribution of mosquitoes as well as the different mosquito-borne diseases found in Cameroon was made. A total of 290 publications/reports and the mosquito catalogue website were consulted for the review. To date, about 307 species, four subspecies and one putative new species of Culicidae, comprising 60 species and one putative new species of Anopheles, 67 species and two subspecies of Culex, 77 species and one subspecies of Aedes, 31 species and one subspecies of Eretmapodites, two Mansonia, eight Coquillettidia, and 62 species with unknown medical and veterinary importance (Toxorhynchites, Uranotaenia, Mimomyia, Malaya, Hodgesia, Ficalbia, Orthopodomyia, Aedeomyia, and Culiseta and Lutzia) have been collected in Cameroon. Multiple mosquito species implicated in the transmission of pathogens within Anopheles, Culex, Aedes, Eretmapodites, Mansonia, and Coquillettidia have been reported in Cameroon. Furthermore, the presence of 26 human and zoonotic arboviral diseases, one helminthic disease, and two protozoal diseases has been reported. Information on the bionomics, taxonomy, and distribution of mosquito species will be useful for the development of integrated vector management programmes for the surveillance and elimination of mosquito-borne diseases in Cameroon

    Aedes Mosquito Distribution along a Transect from Rural to Urban Settings in Yaoundé, Cameroon

    Get PDF
    Introduction: The surveillance of mosquito vectors is important for the control of arboviruses diseases worldwide. Detailed information on the bionomics and distribution of their main vectors, Aedes aegypti and Aedes albopictus, is essential for assessing disease transmission risk and for better planning of control interventions. Methods: Entomological surveys were carried out from November 2019 to November 2020 in six localities of Yaoundé city following a transect from urban to rural settings: two urban (Obili, Mvan), two peri-urban (Simbock, Ahala) and two rural areas (Lendom, Elig-essomballa)—during rainy and dry seasons. All water containers were inspected. Aedes mosquito abundance, species distribution and seasonal distribution patterns were compared using generalized linear models. Stegomyia indexes were estimated to determine the risk of arbovirus transmission. Results: A total of 6332 mosquitoes larvae were collected (2342 in urban areas, 1694 in peri-urban areas and 2296 in rural sites). Aedes species recorded included Ae. albopictus, Ae. aegytpi, Ae. simpsoni and Aedes spp. High mosquito abundance was registered in the rainy season (4706) compared to the dry season (1626) (p < 0.0001). Ae. albopictus was the most abundant Aedes species in urban (96.89%) and peri-urban (95.09%) sites whereas Ae. aegypti was more prevalent in rural sites (68.56%) (p < 0.0001). Both species were found together in 71 larval habitats. Ae. albopictus was mostly found in discarded tires (42.51%), whereas Ae. aegypti was more prevalent in plastic containers used for storing water (65.87%). The majority of Aedes mosquitoes’ breeding places were situated close to human dwellings (0–10 m). Conclusion: Uncontrolled urbanization seems to greatly favour the presence of Aedes mosquito species around human dwellings in Yaoundé. Controlling Aedes mosquito distribution is becoming urgent to reduce the risk of arbovirus outbreaks in the city of Yaound

    Bendiocarb and Malathion Resistance in Two Major Malaria Vector Populations in Cameroon Is Associated with High Frequency of the G119S Mutation (Ace-1) and Overexpression of Detoxification Genes

    Get PDF
    The spread of pyrethroid resistance in malaria vectors is a major threat affecting the performance of current control measures. However, there is still not enough information on the resistance profile of mosquitoes to carbamates and organophosphates which could be used as alternatives. The present study assessed the resistance profile of Anopheles gambiae s.l. to bendiocarb and malathion, at the phenotypic and molecular levels, in different eco-epidemiological settings in Cameroon. Anopheles gambiae s.l. mosquitoes were collected from four eco-epidemiological settings across the country and their susceptibility level to bendiocarb and malathion was determined using WHO tubes bioassays. The ace-1 target site G119S mutation was screened by PCR. Reverse Transcription quantitative PCR 3-plex TaqMan assays were used to quantify the level of expression of eight genes associated with metabolic resistance. Resistance to malathion and/or bendiocarb was recorded in all study sites except in mosquitoes collected in Kaélé and Njombé. The Ace-1 (G119S) mutation was detected in high frequencies (>40%) in Kékem and Santchou. Both An. gambiae and An. coluzzii were detected carrying this mutation. The cytochrome P450s gene Cyp6p3 associated with carbamate resistance and the glutathione S-transferase gene Gste2 associated with organophosphate resistance were found to be overexpressed. Genes associated with pyrethroid (Cyp6m2, Cyp9k1, Cyp6p3) and organochlorine (Gste2, Cyp6z1, Cyp6m2) and cuticle resistance (Cyp4g16) were also overexpressed. The rapid spread of resistance to organophosphates and carbamates could seriously compromise future control strategies based on IRS. It is therefore becoming important to assess the magnitude of bendiocarb and malathion resistance countrywide
    corecore