770 research outputs found

    A universal adiabatic quantum query algorithm

    Full text link
    Quantum query complexity is known to be characterized by the so-called quantum adversary bound. While this result has been proved in the standard discrete-time model of quantum computation, it also holds for continuous-time (or Hamiltonian-based) quantum computation, due to a known equivalence between these two query complexity models. In this work, we revisit this result by providing a direct proof in the continuous-time model. One originality of our proof is that it draws new connections between the adversary bound, a modern technique of theoretical computer science, and early theorems of quantum mechanics. Indeed, the proof of the lower bound is based on Ehrenfest's theorem, while the upper bound relies on the adiabatic theorem, as it goes by constructing a universal adiabatic quantum query algorithm. Another originality is that we use for the first time in the context of quantum computation a version of the adiabatic theorem that does not require a spectral gap.Comment: 22 pages, compared to v1, includes a rigorous proof of the correctness of the algorithm based on a version of the adiabatic theorem that does not require a spectral ga

    Creep of Bulk C--S--H: Insights from Molecular Dynamics Simulations

    Full text link
    Understanding the physical origin of creep in calcium--silicate--hydrate (C--S--H) is of primary importance, both for fundamental and practical interest. Here, we present a new method, based on molecular dynamics simulation, allowing us to simulate the long-term visco-elastic deformations of C--S--H. Under a given shear stress, C--S--H features a gradually increasing shear strain, which follows a logarithmic law. The computed creep modulus is found to be independent of the shear stress applied and is in excellent agreement with nanoindentation measurements, as extrapolated to zero porosity

    Large-eddy simulation of the flow in a lid-driven cubical cavity

    Full text link
    Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have been carried out at a Reynolds number of 12000 using spectral element methods. Two distinct subgrid-scales models, namely a dynamic Smagorinsky model and a dynamic mixed model, have been both implemented and used to perform long-lasting simulations required by the relevant time scales of the flow. All filtering levels make use of explicit filters applied in the physical space (on an element-by-element approach) and spectral (modal) spaces. The two subgrid-scales models are validated and compared to available experimental and numerical reference results, showing very good agreement. Specific features of lid-driven cavity flow in the turbulent regime, such as inhomogeneity of turbulence, turbulence production near the downstream corner eddy, small-scales localization and helical properties are investigated and discussed in the large-eddy simulation framework. Time histories of quantities such as the total energy, total turbulent kinetic energy or helicity exhibit different evolutions but only after a relatively long transient period. However, the average values remain extremely close

    Solar Airplane Conceptual Design and Performance Estimation: What Size to Choose and What Endurance to Expect

    Get PDF
    Solar airplanes exhibit a fascination due to their energy sustainability aspect and the potential for sustained flight lasting several day-night cycles. Resulting monitoring and measurement applications at high altitudes but also close to the Earth surface would be extremely useful and are targeted by several research groups and institutions. The question of how to choose the main design parameters of the airplane for a specific mission, considering the current state-of-the-art technologies involved, however, is not easy to answer. A tool is presented performing such a multi-disciplinary optimization. Solar airplanes using both batteries as energy storage devices as well as their capability of flying performance-optimizing altitude profiles can be sized and evaluated in terms of various performance measures. Simulation results show that sustained flight in the Stratosphere is hard to achieve, if the altitude needs to be kept constant. A simulated Remote Control (RC) model size solar airplane allowed to vary altitude proves to be capable of flying multiple day-night cycles at medium and high latitudes during summe

    La découverte du vrai Dieu et du sens de l'homme chez Martin Luther King Jr

    Get PDF

    Isothermal remanent magnetization and the spin dimensionality of spin glasses

    Full text link
    The isothermal remanent magnetization is used to investigate dynamical magnetic properties of spatially three dimensional spin glasses with different spin dimensionality (Ising, XY, Heisenberg). The isothermal remanent magnetization is recorded vs. temperature after intermittent application of a weak magnetic field at a constant temperature ThT_h. We observe that in the case of the Heisenberg spin glasses, the equilibrated spin structure and the direction of the excess moment are recovered at ThT_h. The isothermal remanent magnetization thus reflects the directional character of the Dzyaloshinsky-Moriya interaction present in Heisenberg systems.Comment: tPHL2e style; 7 page, 3 figure

    Contractions in perfect graph

    Full text link
    In this paper, we characterize the class of {\em contraction perfect} graphs which are the graphs that remain perfect after the contraction of any edge set. We prove that a graph is contraction perfect if and only if it is perfect and the contraction of any single edge preserves its perfection. This yields a characterization of contraction perfect graphs in terms of forbidden induced subgraphs, and a polynomial algorithm to recognize them. We also define the utter graph u(G)u(G) which is the graph whose stable sets are in bijection with the co-2-plexes of GG, and prove that u(G)u(G) is perfect if and only if GG is contraction perfect.Comment: 11 pages, 4 figure

    Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter

    Get PDF
    RNA interference (RNAi) mediated by expression of short hairpin RNAs (shRNAs) is a powerful tool for efficiently suppressing target genes. The approach allows studies of the function of individual genes and may also be applied to human therapy. However, in many instances regulation of RNAi by administration of a small inducer molecule will be required. To date, the development of appropriate regulatory systems has been hampered by the few possibilities for modification within RNA polymerase III promoters capable of driving efficient expression of shRNAs. We have developed an inducible minimal RNA polymerase III promoter that is activated by a novel recombinant transactivator in the presence of doxycycline (Dox). The recombinant transactivator and the engineered promoter together form a system permitting regulation of RNAi by Dox-induced expression of shRNAs. Regulated RNAi was mediated by one single lentiviral vector, blocked the expression of green fluorescent protein (GFP) in a GFP-expressing HEK 293T derived cell line and suppressed endogenous p53 in wild-type HEK 293T, MCF-7 and A549 cells. RNA interference was induced in a dose- and time-dependent manner by administration of Dox, silenced the expression of both target genes by 90% and was in particular reversible after withdrawal of Dox
    • …
    corecore