1,770 research outputs found

    On event-by-event fluctuations in nuclear collisions

    Get PDF
    We demonstrate that a new type of analysis in heavy-ion collisions, based on an event-by-event analysis of the transverse momentum distribution, allows us to obtain information on secondary interactions and collective behaviour that is not available from the inclusive spectra. Using a random walk model as a simple phenomenological description of initial state scattering in collisions with heavy nuclei, we show that the event-by-event measurement allows a quantitative determination of this effect, well within the resolution achievable with the new generation of large acceptance hadron spectrometers. The preliminary data of the NA49 collaboration on transverse momentum fluctuations indicate qualitatively different behaviour than that obtained within the random walk model. The results are discussed in relation to the thermodynamic and hydrodynamic description of nuclear collisions

    Rational Strain Engineering in Delafossite Oxides for Highly Efficient Hydrogen Evolution Catalysis in Acidic Media

    Full text link
    The rational design of hydrogen evolution reaction (HER) electrocatalysts which are competitive with platinum is an outstanding challenge to make power-to-gas technologies economically viable. Here, we introduce the delafossites PdCrO2_2, PdCoO2_2 and PtCoO2_2 as a new family of electrocatalysts for the HER in acidic media. We show that in PdCoO2_2 the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a strained (by +2.3%) Pd rich capping layer under reductive conditions. The surface modification continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density j0_0 from 2 to 5 mA/cmgeo2^2_{geo} and by reducing the Tafel slope down to 38 mV/decade, leading to overpotentials η10\eta_{10} < 15 mV for 10 mA/cmgeo2^2_{geo}, superior to bulk platinum. The greatly improved activity is attributed to the in-situ stabilization of a β\beta-palladium hydride phase with drastically enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando induced electrodissolution can be used as a top-down design concept for rational surface and property engineering through the strain-stabilized formation of catalytically active phases

    System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    Full text link
    We present results on two-particle angular correlations in Cu+Cu and Au+Au collisions at a center of mass energy per nucleon pair of 200 GeV over a broad range of pseudorapidity (η\eta) and azimuthal angle (ϕ\phi) as a function of collision centrality. The PHOBOS detector at RHIC has a uniquely-large angular coverage for inclusive charged particles, which allows for the study of correlations on both long- and short-range scales. A complex two-dimensional correlation structure in Δη\Delta \eta and Δϕ\Delta \phi emerges, which is interpreted in the context of a cluster model. The effective cluster size and decay width are extracted from the two-particle pseudorapidity correlation functions. The effective cluster size found in semi-central Cu+Cu and Au+Au collisions is comparable to that found in proton-proton collisions but a non-trivial decrease of the size with increasing centrality is observed. Moreover, a comparison between results from Cu+Cu and Au+Au collisions shows an interesting scaling of the effective cluster size with the measured fraction of total cross section (which is related to the ratio of the impact parameter to the nuclear radius, b/2Rb/2R), suggesting a geometric origin. Further analysis for pairs from restricted azimuthal regions shows that the effective cluster size at Δϕ180\Delta\phi \sim 180^{\circ} drops more rapidly toward central collisions than the size at Δϕ0\Delta\phi \sim 0^{\circ}. The effect of limited η\eta acceptance on the cluster parameters is also addressed, and a correction is applied to present cluster parameters for full η\eta coverage, leading to much larger effective cluster sizes and widths than previously noted in the literature. These results should provide insight into the hot and dense medium created in heavy ion collisions.Comment: 9 pages, 8 figures, Published in Phys. Rev.

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore