118 research outputs found

    Mean-Field Theory of Water-Water Correlations in Electrolyte Solutions

    Full text link
    Long-range ion induced water-water correlations were recently observed in femtosecond elastic second harmonic scattering experiments of electrolyte solutions. To further the qualitative understanding of these correlations, we derive an analytical expression that quantifies ion induced dipole-dipole correlations in a non-interacting gas of dipoles. This model is a logical extension of Debye-H\"uckel theory that can be used to qualitatively understand how the combined electric field of the ions induces correlations in the orientational distributions of the water molecules in an aqueous solution. The model agrees with results from molecular dynamics simulations and provides an important starting point for further theoretical work

    Second-Harmonic Scattering as a Probe of Structural Correlations in Liquids

    Get PDF
    Second-harmonic scattering experiments of water and other bulk molecular liquids have long been assumed to be insensitive to interactions between the molecules. The measured intensity is generally thought to arise from incoherent scattering due to individual molecules. We introduce a method to compute the second-harmonic scattering pattern of molecular liquids directly from atomistic computer simulations, which takes into account the coherent terms. We apply this approach to large-scale molecular dynamics simulations of liquid water, where we show that nanosecond second-harmonic scattering experiments contain a coherent contribution arising from radial and angular correlations on a length scale of < 1 nm, much shorter than had been recently hypothesized (Shelton, D. P. J. Chem. Phys. 2014, 141). By combining structural correlations from simulations with experimental data (Shelton, D. P. J. Chem. Phys. 2014, 141), we can also extract an effective molecular hyperpolarizability in the liquid phase. This work demonstrates that second-harmonic scattering experiments and atomistic simulations can be used in synergy to investigate the structure of complex liquids, solutions, and biomembranes, including the intrinsic intermolecular correlations

    Solvent Fluctuations and Nuclear Quantum Effects Modulate the Molecular Hyperpolarizability of Water

    Get PDF
    Second-Harmonic Scatteringh (SHS) experiments provide a unique approach to probe non-centrosymmetric environments in aqueous media, from bulk solutions to interfaces, living cells and tissue. A central assumption made in analyzing SHS experiments is that the each molecule scatters light according to a constant molecular hyperpolarizability tensor β(2)\boldsymbol{\beta}^{(2)}. Here, we investigate the dependence of the molecular hyperpolarizability of water on its environment and internal geometric distortions, in order to test the hypothesis of constant β(2)\boldsymbol{\beta}^{(2)}. We use quantum chemistry calculations of the hyperpolarizability of a molecule embedded in point-charge environments obtained from simulations of bulk water. We demonstrate that both the heterogeneity of the solvent configurations and the quantum mechanical fluctuations of the molecular geometry introduce large variations in the non-linear optical response of water. This finding has the potential to change the way SHS experiments are interpreted: in particular, isotopic differences between H2_2O and D2_2O could explain recent second-harmonic scattering observations. Finally, we show that a simple machine-learning framework can predict accurately the fluctuations of the molecular hyperpolarizability. This model accounts for the microscopic inhomogeneity of the solvent and represents a first step towards quantitative modelling of SHS experiments

    Optical Imaging of Surface Chemistry and Dynamics in Confinement

    Full text link
    The interfacial structure and dynamics of water in a microscopically confined geometry is imaged in three dimensions and on millisecond time scales. We developed a 3D wide-field second harmonic microscope that employs structured illumination. We image pH induced chemical changes on the curved and confined inner and outer surfaces of a cylindrical glass micro-capillary immersed in aqueous solution. The image contrast reports on the orientational order of interfacial water, induced by charge-dipole interactions between water molecules and surface charges. The images constitute surface potential maps. Spatially resolved surface pKa,s values are determined for the silica deprotonation reaction. Values range from 2.3<pKa,s<10.7, highlighting the importance of surface heterogeneities. Water molecules that rotate along an oscillating external electric field are also imaged. With this approach, real time movies of surface processes that involve flow, heterogeneities and potentials can be made, which will further developments in electrochemistry, geology, catalysis, biology, and microtechnology

    Ion-induced transient potential fluctuations facilitate pore formation and cation transport through lipid membranes

    Full text link
    Unassisted ion transport through lipid membranes plays a crucial role in many cell functions without which life would not be possible, yet the precise mechanism behind the process remains unknown due to its molecular complexity. Here, we demonstrate a direct link between membrane potential fluctuations and divalent ion transport. High-throughput wide-field second harmonic (SH) microscopy shows that membrane potential fluctuations are universally found in lipid bilayer systems. Molecular dynamics simulations reveal that such variations in membrane potential reduce the free energy cost of transient pore formation and increase the ion flux across an open pore. These transient pores can act as conduits for ion transport, which we SH image for a series of divalent cations (Cu2+^{2+}, Ca2+^{2+}, Ba2+^{2+}, Mg2+^{2+}) passing through GUV membranes. Combining the experimental and computational results, we show that permeation through pores formed via an ion-induced electrostatic field is a viable mechanism for unassisted ion transport.Comment: 8 pages, 2 figure

    Water-Mediated Ion Pairing: Occurrence and Relevance

    Get PDF
    We present an overview of the studies of ion pairing in aqueous media of the past decade. In these studies, interactions between ions, and between ions and water, are investigated with relatively novel approaches, including dielectric relaxation spectroscopy, far-infrared (terahertz) absorption spectroscopy, femtosecond mid-infrared spectroscopy, and X-ray spectroscopy and scattering, as well as molecular dynamics simulation methods. With these methods, it is found that ion pairing is not a rare phenomenon only occurring for very particular, strongly interacting cations and anions. Instead, for many salt solutions and their interfaces, the measured and calculated structure and dynamics reveal the presence of a distinct concentration of contact ion pairs (CIPs), solvent shared ion pairs (SIPs), and solvent-separated ion pairs (2SIPs). We discuss the importance of specific ion-pairing interactions between cations like Li+ and Na+ and anionic carboxylate and phosphate groups for the structure and functioning of large (bio)molecular systems

    Probing Rotational and Translational Diffusion of Nanodoublers in Living Cells on Microsecond Time Scales

    Get PDF
    Nonlinear microscopes have seen an increase in popularity in the life sciences due to their molecular and structural specificity, high resolution, large penetration depth, and volumetric imaging capability. Nonetheless, the inherently weak optical signals demand long exposure times for live cell imaging. Here, by modifying the optical layout and illumination parameters, we can follow the rotation and translation of noncentrosymetric crystalline particles, or nanodoublers, with 50 mu s acquisition times in living cells. The rotational diffusion can be derived from variations in the second harmonic intensity that originates from the rotation of the nanodoubler crystal axis. We envisage that by capitalizing on the biocompatibility, functionalizability, stability, and nondestructive optical response of the nanodoublers, novel insights on cellular dynamics are within reach

    Liquid-activated quantum emission from native hBN defects for nanofluidic sensing

    Get PDF
    Nanostructures made of two-dimensional (2D) materials have become the flagship of nanofluidic discoveries in recent years. By confining liquids down to a few atomic layers, anomalies in molecular transport and structure have been revealed. Currently, only indirect and ensemble averaged techniques have been able to operate in such extreme confinements, as even the smallest molecular fluorophores are too bulky to penetrate state-of-the-art single-digit nanofluidic systems. This strong limitation calls for the development of novel optical approaches allowing for the direct molecular imaging of liquids confined at the nanoscale. Here, we show that native defects present at the surface of hexagonal boron nitride (hBN) - a widely used 2D material - can serve as probes for molecular sensing in liquid, without compromising the atomic smoothness of their host material. We first demonstrate that native surface defects are readily activated through interactions with organic solvents and confirm their quantum emission properties. Vibrational spectra of the emitters suggest that their activation occurs through the chemisorption of carbon-bearing liquid molecules onto native hBN defects. The correlated activation of neighboring defects reveals single-molecule dynamics at the interface, while defect emission spectra offer a direct readout of the local dielectric properties of the liquid medium. We then harvest these effects in atomically smooth slit-shaped van der Waals channels, revealing molecular dynamics and increasing dielectric order under nanometre-scale confinement. Liquid-activated native defects in pristine hBN bridge the gap between solid-state nanophotonics and nanofluidics and open up new avenues for nanoscale sensing and optofluidics.Comment: 16 pages, 5 figure

    High throughput second harmonic imaging for label-free biological applications

    Get PDF
    Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture. (C) 2014 Optical Society of Americ
    • …
    corecore