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Abstract: Second harmonic generation (SHG) is inherently sensitive to the 

absence of spatial centrosymmetry, which can render it intrinsically 

sensitive to interfacial processes, chemical changes and electrochemical 

responses. Here, we seek to improve the imaging throughput of SHG 

microscopy by using a wide-field imaging scheme in combination with a 

medium-range repetition rate amplified near infrared femtosecond laser 

source and gated detection. The imaging throughput of this configuration is 

tested by measuring the optical image contrast for different image 

acquisition times of BaTiO3 nanoparticles in two different wide-field setups 

and one commercial point-scanning configuration. We find that the second 

harmonic imaging throughput is improved by 2-3 orders of magnitude 

compared to point-scan imaging. Capitalizing on this result, we perform 

low fluence imaging of (parts of) living mammalian neurons in culture. 

©2014 Optical Society of America 

OCIS codes: (180.4315) Nonlinear microscopy; (170.3880) Medical and biological imaging; 

(120.4640) Optical instruments; (220.4830) Systems design. 
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Introduction 

Second-harmonic generation (SHG) is an elastic two-photon process in which two photons 

are transformed by a material into one photon with the double frequency. SHG is inherently 

sensitive to the presence of spatial non-centrosymmetry. Therefore it is sensitive to bulk non-

centrosymmetric structural spatial arrangements (in fibrils or in crystals), interfaces, or 

electric field induced breaking of symmetry. SHG imaging was demonstrated in the 1970’s 

[1,2] and was first applied to imaging tissues in the 1980’s [3]. Thanks to the development of, 

among other things, ultrafast laser sources, it is only in the two recent decades that SHG 

imaging has seen a tremendous development [4,5]. SHG imaging has been applied in many 

chemical, biological and medical applications. For example, ferroelectric domains in niobate 

crystals [6], dye covered Langmuir films [7] modified membranes [8–10] (using the UV 

resonance of biomolecules), quantum dots [11], and non-centrosymmetric crystal structures of 

proteins at very low concentrations in solution and bacteria have been successfully explored 

[12–14]. 

The intrinsic energy conservation of the SHG process ensures low photo-damage and -

toxicity, which is ideal for imaging of biological and medical samples. SHG imaging has been 

used to visualize the membrane of vesicles [15] and cell membranes with the aid of 

fluorophore labeling [16,17], and to image tissues that are rich in endogenous non-

centrosymmetric material, such as collagen [18–20], muscle myosin [21,22] and microtubulin 

fibrils [23–26]. The latter has been used to determine the microtubule organization in neurons 

[23,24]. SHG studies have also been performed to aid medical diagnostic purposes [25–29] 

and medicine development [30,31]. Voltage sensitive membrane specific markers have 

permitted for single site time dependent optical recordings of membrane potential activity 

[32–37]. This enabled the team of Yuste and Eisenthal to measure the length of the dendritic 

spine necks in living neurons and to determine that dendritic spines linearize the summation 

of excitatory potentials [38]. In another promising approach, SHG active surface modifiable 

non-centrosymmetric nanodoublers [39] have been introduced as a practical alternative to 

fluorescent molecules and quantum dots, to track processes through in-vitro (cell) imaging 

[40–44]. These studies clearly demonstrate the unique ability and promising possibilities of 

SHG microscopy to probe materials and interfaces, identify and quantify histoarchitectural 

tissue alterations, and to track changes in living systems. 

Even though SHG imaging is used in a wide range of applications, the imaging 

throughput, defined as number of detected photons per frame per second, is still relatively low 

compared to linear microscopy [45]. An improvement of the imaging throughput could enable 

the use of SHG imaging to detect dynamical biological processes that occur on the (sub) 

millisecond time scale, or advance the use of label-free SHG imaging for material studies or 

clinical applications. Label-free imaging applications are of interest for clinical and long-term 

measurements; labels (chromophores or particles) inevitably interfere with the process of 

interest and are often toxic, limiting the imaging time significantly. Two approaches are taken 

to improve imaging throughput (reviewed in [45,46]): The first one is to improve the 

scanning speed of the microscope in combination with the use of faster repetition rate laser 

sources [47,48]. The second one is to parallelize the imaging process. Recent advancements 

[46] include wide-field counter propagating SHG geometries [10,11], lens-less imaging 

approaches [49], harmonic holography [50,51], multi-confocal imaging [52,53], and 

spatiotemporal wide-field illumination [54–58]. 

Recently we presented a method to perform high throughput SHG scattering experiments 

to obtain elastic non-resonant surface responses from unlabeled 80 nm sized liposome 

membranes in aqueous solution with 5 millisecond acquisition times, in which we employed a 

medium-ranged (200 kHz) repetition rate femtosecond amplified laser system in combination 

with gated detection [59]. In principle this throughput could also be achieved in an imaging 

application. We therefore investigate here the possibilities of SHG imaging using a wide-field 
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illumination scheme in combination with such a laser source and gated detection. We start by 

considering the parameters that are needed to maximize imaging throughput, so that laser 

fluences can be kept low (as required for biological imaging), and characterize the optical 

parameters of our proposed scheme. Then, we compare our approach to a commercial 

scanning SHG microscope, and a previously published wide-field approach employing a 

1 kHz near infrared femtosecond laser as light source. We find an improvement in imaging 

throughput of 2-4 orders of magnitude compared to the commercial scanning system and the 

1 kHz system. Finally, we explore the possibilities for label-free low fluence imaging of 

single living neurons in culture. 

Imaging throughput considerations 

To maximize the imaging throughput, defined as number of detected photons per image per 

second, of an SHG imaging system, we consider the number of photons Ni produced per 

second per illuminated area [60]: 

 

2
2 ,(2) ,

p i

i i

i i

E
N f

A
   (1) 

where Γ
(2)

 is the effective second-order surface susceptibility of the probed (curved) surface 

or microscopic object [61], Ep,i is the pulse energy (in J), with pulse duration τι in s, 

illumination area Ai, (in m
2
) and repetition rate fi (in Hz). The subscript i refers to the two 

different configurations considered here: wide-field (wf) and scanning (s). It is clear from 

Eq. (1) that decreasing the area and increasing the repetition rate increases Ni. However, to 

calculate the throughput in an imaging system it is necessary to take into account the ratio 

between the size of the image and the illumination area. We therefore assume that for the 

scanning system the scanning rate is one image frame per second, and that this image is 

formed by n = Awf / As scanning points. The latter is a reasonable assumption, but somewhat 

on the low side as it is common in scanning systems to oversample the image. Assuming that 

the pulse wavelength, duration, and fluence (Fi = Ep,i / Ai) is equal for both scanning and 

wide-field systems, we have τwf = τs, and Ewf = Esn. We can then compute the throughput ratio 

Nwf /Ns as 

 .
wf wf

s s

N f
n

N f
  (2) 

Thus for an image with 100 x 100 (or 1000 x 1000) scanning points and a repetition rate 

fs = 100 MHz, a wide-field system delivers more photons per image per second if fwf > 10 (or 

0.1) kHz. A further significant improvement is possible with higher repetition rates: A 

100 kHz system may reach a 10 - to 1000-fold improvement depending on the image size. 

This is indeed what is observed in Fig. 1(a) when plotting the imaging throughput as a 

function of fluence for three different imaging schemes: a scanning system (80 MHz, 820 nm, 

190 fs) with an illumination diameter of 0.5 μm, image size of 100 x 100 μm (black line, 

comparable to e.g [40]. or [23]); a wide-field double-beam illumination (1 kHz, 800 nm, 

120 fs) with an illumination ellipse with diameters of 250 and 1000 μm (emission area with a 

diameter of 250 μm, green line, e.g [11].); and a wide-field double-beam illumination 

representative of the setup used in this work (200 kHz, 1028 nm, 190 fs) with an illumination 

ellipse with diameters of 100 and 140 μm (emission area with a diameter of 85 μm, red line). 

The relative imaging throughput of the red line is larger than the other two. As a consequence 

of the increased imaging throughput, lower laser fluences can be used. 

Low fluence imaging is of particular importance in biological imaging. Irrespective of the 

mechanism to induce damage, imaging of living specimens requires that the delivered energy 

per area be kept as low as possible, so that the cells are minimally perturbed by the laser 

pulses. It has been reported that unstained CHO cells slow their growth rate and die above 
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fluences of 381 and 1222 mJ/cm
2
, respectively [62], when illuminating with 1035 nm 

wavelength, 393 fs pulses, 100 kHz repetition rate, and 10 x 50 μs dwell time. Figure 1(b) 

shows a calculation of the delivered fluence as a function of delivered laser power for the 

three different illumination schemes used in the calculation of Fig. 1(a). Damage thresholds 

are indicated by the colored area in Fig. 1(b). Larger illumination areas allow for lower 

fluences, and in the case of the wide-field configuration the used fluences are well below the 

reported damage thresholds. Figure 1(c) displays the equivalent average intensities for 

comparison. 

 

Fig. 1. Calculated imaging throughput. (a) The imaging throughput for a given fluence 

(proportional to the number of emitted photons per image) for a scanning imaging system 

(black line), a wide-field imaging system as described here (red line), and a 1 kHz wide-field 
system (green line). (b) Calculation of the delivered fluence for a given power for the three 

different systems; the illumination parameters can be found in the text. The arrows in 

(b) indicate the upper limits quoted in different works: 1 – This work; 2 – in [11]; 3 – in [40] 
and 4 – in [23] (4). The colored area illustrates for which fluences unstained CHO cells start to 

be perturbed in growth (yellow) and permanently damaged (red) [62]. (c) For comparison, the 

corresponding delivered average intensities. 

It should be noted, however, that in reality the fluence for a scanning system is lower than 

the numbers used here since each pixel has a dwell time that is usually less than a 

millisecond. How much this matters for the actual damage done to a system depends on the 

optical transition, the excited state, and the energy transfer and transport equations that 

govern the phototoxicity and damage process. It is also likely that a certain spot on the sample 

may receive photons from neighboring scanning points so that it is not trivial to quantify 

these effects. For low repetition rates, effects such as white light generation become 

important. In terms of achieving maximum imaging throughput with our approach, it is thus 

likely that the energy transport mechanisms play an important role, which suggests that the 

maximum gain in imaging throughput is reached for repetition rates of ~1 MHz [63,64]. 

Imaging system and characterization 

Based on the imaging throughput considerations, we employ two weakly focused counter 

propagating beams as in [10,11] with an additional prism for efficient coupling (see 

Fig. 2(a)). Compared to the systems of [10,11] the illumination source and detector is very 

different. Kriech and Conboy in [10] used unfocused light from an optical parametric 

oscillator with a repetition rate of 10 Hz and pulse duration of 7 ns and 10 mJ ouput per pulse 

centered at 550 nm wavelength; the beam had a diameter of 2 mm incident on the sample at 

an angle of 70°, and the detection consisted of a monochromator followed by a 

photomultiplier tube. Peterson et al in [11] used 800 nm, 120 fs, 1 kHz laser pulses focused 

down to an elliptic area of π(125 x 500 μm)
2
 with an unspecified power of 40-400 mW, and a 

CCD camera for detection. Our light source consists of a Yb:KGW amplified laser (Pharos 
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Light Conversion), delivering 200 kHz, 1028 nm, 190 fs laser pulses with energies of 

0.1 - 0.8 μJ to an elliptical illumination spot size of 100 x 140 μm in diameter. 

More specifically, the light passes through a band pass filter (1028/10 nm, EKSPLA), and 

is split equally over two counter propagating beams (with a 90° angle) that are coupled into 

the sample chamber using a 45° prism. Each beam was polarization controlled using zero-

order quarter and half wave plates, so that 8 polarization configurations are possible, and 

focused on the sample with a f = 20 cm doublet lens (Thorlabs). The average power at the 

sample did not exceed 160 mW. The SHG photons were created in a cylindrical volume that 

is ~85 μm wide and 70 μm in depth, determined by the pulse duration and angle of incidence 

of the incoming beams. The sample was imaged by a 50x objective lens (Mitutoyo Plan Apo 

NIR HR Infinity-Corrected Objective, 0.65 NA) in combination with a tube lens (Mitutoyo 

MT-L), a 800 nm short pass filer (omega optical), a 515 nm band pass filter (Omega Optical, 

10 nm bandwidth) and an EM-ICCD camera (PiMax4, Princeton Instruments). A meniscus 

lens was placed behind the objective lens to remove spherical aberrations induced by the 

coverslip. The objective lens has a field of view larger than the illumination area. Figure 2(b) 

shows a spectrum of the incident beam just before it hits the sample (FWHM ~9 nm). 

Figure 2(c) shows a cross-correlation obtained by delaying the pulses while imaging a single 

50 nm BaTiO3 nanoparticle. The pulse duration at the focus is 197 fs (assuming a Gaussian 

beam shape). Compared to the original input beam parameters (190 fs, 8.7 nm), there is little 

change in pulse parameters. 

 

Fig. 2. Optical Layout. (a) The optical layout of the microscope. Symbols: P: polarizer, 

SF: spatial filter, M: mirror, λ/2: half wave plate, L: lens, Obj: objective lens, TL: tube lens, 
F: filter, D: Detector. The sample cell is configured with two glass coverslips in between 

which a liquid flow can be established. (b) The spectrum of the SHG beam at the sample. (c) 

The intensity cross-correlation, measured with a single BaTiO3 nanoparticle in the focus and 
varying the temporal delay. 

Epi-detection can be implemented easily by rearranging the incoming beams, changing 

the prism to a flat top prism, and correcting for spherical aberrations. In the imaging system 

of Fig. 2, the illuminating section has a larger depth of field compared to scanning nonlinear 

microscopes and spatiotemporal focusing microscopes [54–58]. It is possible to limit the 

illumination depth by e.g. using a 5 micron high sample cell [65] or by producing axial cross-

sections using structured illumination [58]. The latter is possible but has not been 

implemented in the present microscope. In principle spatiotemporal focusing shares some of 

the improvement in imaging throughput. The detection is different, and spatiotemporal 

aberrations induced by e.g. biological specimens are no issue here. 
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Imaging throughput measurements 

To test the throughput of this configuration, we have measured SHG images of 50 nm BaTiO3 

nanoparticles that were deposited on a coverslip using fiducial markers. We tested three 

different illumination conditions, corresponding roughly to the configurations used in the 

calculation of Fig. 1. We measured images from the same spot on the same sample with the 

same wavelength and pulse duration. The fluence was 10.5 mJ/cm
2
 for the 1 kHz system or 

2.55 mJ/cm
2
 otherwise and the imaging acquisition time was varied. The contrast (amplitude 

of the signal divided by its spanning range) was calculated for each image and plotted as a 

function of acquisition time in Fig. 3(a). The black data points were taken with a Leica TCS 

SP5 scanning microscope in transmission mode, the blue and the red data points were 

obtained with the SHG wide-field system of Fig. 2 (using different gain settings for the 

camera), and the green data points were obtained by reducing the repetition rate of our laser 

to 1 kHz and using a regular CCD camera, i.e. without intensifier or electron multiplier, with 

a quantum efficiency of 50%. Figure 3(b) shows cross-sections of the images at the position 

depicted by the blue line in the inset Fig. 3(a), image obtained for the red data points. Figure 3 

suggests that the same contrast (or image quality) can be obtained with either one of the 

systems, but with acquisition times that are 2-3 orders of magnitude shorter when using the 

wide-field system of Fig. 2.  

 

Fig. 3. Measured imaging throughput. (a) Measured contrast in the images recorded from the 

same position of the same sample in four different systems: wide-field (200 kHz, gated 

detection as proposed here, blue and red curves), a scanning microscope (Leica TCS SP5 with 
1028 nm, 88 MHz, 190 fs laser pulses illumination, a 1.2 NA 20x water immersion objective, a 

scanning rate of 1000 Hz/line, image size of 256 x 256 pixels, and collecting NA of 0.9), and a 

wide-field 1 kHz geometry with a normal CCD camera. The used pulse power and repetition 
rate are given in the legend. The blue data points were recorded with the intensifier and the 

electronic amplification of the camera both turned on, while the red data points were recorded 

with only the intensifier on. The inset shows an image of the nanoparticle sample 
corresponding to the largest red data point. The horizontal blue line indicates the position for 

which the intensity cross-sections are displayed in (b). (b) Intensity (raw data) versus position 

for various acquisition times corresponding to the red data points in (a). 

An increase in imaging throughput of several orders of magnitude can thus be obtained 

compared to the 1 kHz configuration (similar to [11]) and the commercial scanning system 

for elastic SHG imaging. To confirm this conclusion, however, we first verify that our data 

points are indeed reasonable compared to published literature. Regarding the scanning 

measurement of the BaTiO3 nanoparticles, we can make a direct comparison to the work of 

Pantazis et al. in [40], who imaged immobilized 30 – 90 nm BaTiO3 nanoparticles in a 

scanning configuration, using 820 nm, 80 MHz, 300 fs pulses focused down to a π × 

(0.26 μm)
2
 focal area with a power of 5 mW. They calculated the signal to noise ratio (SNR) 

of their images to be 10 when imaging at 20 frames/s (or 50 ms/frame) an area of 

0.69x0.69 μm
2
 and using a 40 nm-broad bandpass filter. Taking those parameters, their 

fluence would be F = 29.4 mJ/cm
2
. For our scanning data (black curve), an SNR of 13 is 

obtained using 50 nm nanoparticles if we scan at 0.48 frames/s (2.1 s/frame) an area of 
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30x30 μm
2
, with a fluence of 2.55 mJ/cm

2
 and using a 50 nm-broad bandpass filter 

(BP525/50). Comparing the image acquisition time, we have 2.1 s vs 50 ms in [40]. Thus, we 

have a factor of 42 longer in the acquisition time, but this is obtained with a fluence that is a 

factor of 11.8 smaller. Correcting for the difference in fluence, scanning areas, pulse 

durations, frame rate, and SNR, it therefore seems that the imaging throughput of our 

scanning measurement compares well with that of the literature. Table 1 lists the parameters 

used and the computation made. Note that the spread in particle size does induce an 

inaccuracy in the result of the computation. A direct comparison of the green line with 

Peterson et al in [11] is difficult as the sample is different. In [11], Peterson et al imaged CdSe 

quantum dots with 600 s image acquisition time. In [40] it is shown that both images of CdSe 

quantum dots and BaTiO3 nanoparticles can be compared at an SNR of 10. This means that if 

we compare our acquisition time per image of 25 s at an SNR of 13 (1 mW, 10.5 mJ/cm
2
) 

with the listed 600 s (20-200 mJ/cm
2
), assuming that the SNR in [11] is the same as than in 

[40], the throughput of our system is similar to [11] (see Table 1). Note that the calculated 

number is influenced by the difference between SHG and two-photon response of the BaTiO3 

and CdSe [40], respectively, and to the different detection systems. It follows nonetheless that 

the imaging throughput of the point scanning and 1 kHz wide-field imaging configurations is 

comparable to the imaging throughput of the homologous configurations used to produce the 

(scanning) black and the (wide-field) green data points in Fig. 3. 

Table 1. Comparison of the measurements in Fig. 3(a) with those of the literature 

 Scanning [40] Scanning, black data 
in Fig. 3(a) 

Wide-field [11] Wide-field, green 
data in Fig. 3(a) 

SNR 10 13 10 13 

Acq. Time 0.05 s 2.1 s 600 s 25 s 

Area (Frame) (0.69 μm)2 (30 μm)2 π(125 μm)2 π(50 μm)2 

Pulse duration 300 fs 190 fs 120 fs 190 fs 

Fluence 29.4 mJ/cm2 2.55 mJ/cm2 20-200 mJ/cm2 10.5 mJ/cm2 

     

 Scanning [40] / black, Fig. 3(a) Wide-field [11] / green, Fig. 3(a) 

Throughput ratio 2 2
29.4 10 0.69 2.1 190

1.1
2.5 13 30 0.05 300

       
       

       

 
2 2

20 10 125 25 190
1.2

10.5 13 50 600 120

       
       

       
 

Thus, the proposed configuration indeed generates an increase in throughput of several 

orders of magnitude for elastic SHG microscopy over a scanning geometry or a wide-field 

scheme with low repetition rate. Having developed and characterized an SHG microscope 

with high throughput, we use it for low fluence label-free imaging of parts of living neurons 

in culture. 

Label-free SHG imaging of sub-cellular structures 

Figure 4 shows images of living mammalian neurons in culture (from E17 OF1 mice 

embryos) placed in a flow chamber. Figure 4(a) shows a sketch of the chamber together with 

the used polarization combination of the beams. Figure 4(b) shows the bright field image of 

the cultured neurons. The image displays a neuronal cell body from which arose several 

dendritic-like processes and probably surrounded by axonal-like beaded fibers. Figure 4(c) 

shows the emitted spectrum of the neurons under illumination with the 1028 nm pulsed 

beams. The spectrum consists of a broad bandwidth emission together with a narrow 

bandwidth signal centered at 514 nm. When the electronic gate of the detector is shifted in 

time, the narrow band signal vanishes, while the broad emission spectrum can still be detected 

(albeit with less intensity) under these conditions. Thus, we assign the narrow bandwidth 

signal to the endogenous SHG response of the neurons, and the broad bandwidth emission to 

originate from two-photon fluorescence. The image in Fig. 4(d) displays the two-photon 

emission signal and Fig. 4(e) the second harmonic response of the neurons. Note that the 

color scale of both images has been inverted to improve contrast, so that dark regions 
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represent high intensities. Figure 4(f) is a composite image that shows that the source of the 

two-photon emission (blue) and the second harmonic generation (yellow) are not the same. In 

Fig. 4(d) we observe elongated grey structures as well as dark bright dots. Comparing the 

observed structures to previous studies [23,24], we speculate that the elongated grey line 

structures that exhibit a stronger signal correspond to microtubules which are a main 

component of the neuronal cytoskeleton involved in cell trafficking and axonal transport [66]. 

To make more precise and definitive structural assignments, a comparison of these images to 

images taken with targeted labeling is needed, which is beyond the scope of this work. 

Comparing the illumination parameters to literature, the SHG images in Fig. 4 were 

recorded with 6 s acquisition times, a fluence of 7.3 mJ/cm
2
 (or averaged intensity 

<I> = 147 W/cm
2
), and SSS polarization. Compared to earlier work on unstained neuronal 

cultures by Dombeck et al. [23] who used a 120 s acquisition time and averaged intensities of 

~30 MW/cm
2
 ( = 3400 mJ/cm

2
), the acquisition time and fluence is drastically reduced. 

Spatiotemporal focusing techniques have not yet been used for label-free imaging of living 

neurons [67]. Thus, we show here that the increased imaging throughput can be used to 

reduce the imaging acquisition time and/or the fluence, which results in a significant 

reduction of photodamage probability. 

 

Fig. 4. Label-free SHG imaging of living neurons. (a) Schematic of the flow chamber. The 

neurons are placed on a glass coverslip (as indicated by the box) under flow of HEPES buffer 
solution. The polarization configuration of the beams was SSS. (b) A bright field image of a 

part of the neuronal culture that was subsequently imaged with SHG. The image was obtained 

by placing a white light source in the beam path of one of the incoming beams. (c) The 
spectrum of the part of the cell indicated by the red circle in (b), collected by a spectrometer 

placed before the detector. (d) Inverted image of the endogenous two-photon fluorescence 

signal. (e) Inverted image of the endogenous SHG signal, obtained by placing a band pass 
filter (515/BP10) before the camera. Dark regions correspond to high intensities. (f) Composite 

image of (d) and (e), showing both the fluorescence (blue) and SHG signal (yellow). Images 

(d) and (e) were obtained with a 6 s acquisition time and a fluence of 7.3 mJ/cm2 (or averaged 
intensity <I> = 147 W/cm2). All images represent living neurons, confirmed after every 

experiment by monitoring in dark-field physiological changes as induced by a 

neurotransmitter. 

Conclusions 

In summary, we have implemented changes in the optical layout of a second harmonic 

imaging system that increases the second harmonic imaging throughput for label-free elastic 

SHG imaging by several orders of magnitude. The increase in throughput was achieved with 

a wide-field geometry and medium repetition rate laser source in combination with gated 

detection. In addition to enhanced throughput, the pulse duration is not distorted and can be 
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measured directly at the sample, and dynamic and ultrafast measurements can be performed 

readily with all 8 possible polarization directions. Label-free second harmonic and two 

photon fluorescence imaging and spectroscopy of living neurons have been performed with 

short acquisition time and at very low fluences. Clear second harmonic emission is observed 

from the neurons, which is emitted from different locations as the two-photon fluorescence. 
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