4 research outputs found

    A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    Get PDF
    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms−1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms−1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∌2–3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.This work was supported by the Spanish MICIIN projects AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT-765-13, and UFI11/55 from UPV/EHU. EGM is supported by the Serra Hunter Programme, Generalitat de Catalunya. A. Simon, K. Sayanagi and M.H. Wong were supported by a NASA Cassini Data Analysisgrant (NNX15AD33G and NNX15AD34G). We acknowledge the three orbits assigned by the Director Discretionary time from HST for this research (DD Program 14064, IP A. SĂĄnchez-Lavega). We are very grateful to amateur astronomers contributing with their images to open databases such as PVOL (http://pvol2.ehu.eus/) and ALPO-Japan (http://alpo-j.asahikawa-med.ac.jp/)

    An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure

    Get PDF
    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms(-1) not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet ( latitudes 10 degrees N to 10 degrees S) suffers intense vertical shears reaching + 2.5 ms(-1) km(1), two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level. Palabras claveThis work is based on observations and analysis from Hubble Space Telescope (GO/DD program 14064), Cassini ISS images (NASA pds), and Calar Alto Observatory (CAHA-MPIA). A.S.-L. and UPV/EHU team are supported by the Spanish projects AYA2012-36666 and AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13, Universidad del Pais Vasco UPV/EHU program UFI11/55, and Diputacion Foral Bizkaia (BFA). We acknowledge the contribution of Saturn images by T. Olivetti, M. Kardasis, A. Germano, A. Wesley, P. Miles, M. Delcroix, C. Go, T. Horiuchi and P. Maxon. We also acknowledge the wind model data provided by J. Friedson

    Convective storms in closed cyclones in Jupiter's South Temperate Belt: (I) observations

    Get PDF
    On May 31, 2020 a short-lived convective storm appeared in one of the small cyclones of Jupiter's South Temperate Belt (STB) at planetographic latitude 30.8S. The outbreak was captured by amateur astronomer Clyde Foster in methane-band images, became widely known as Clyde's Spot, and was imaged at very high resolution by the Junocam instrument on board the Juno mission 2.5 days later. Junocam images showed a white two-lobed cyclonic system with high clouds observed in the methane-band at 890 nm. The storm evolved over a few days to become a dark feature that showed turbulence for months, presented oscillations in its drift rate, and slowly expanded, first into a Folded Filamentary Region (FFR), and later into a turbulent segment of the STB over a timescale of one year. On August 7, 2021, a new storm strikingly similar to Clyde's Spot erupted in a cyclone of the STB. The new storm exhibited first a similar transformation into a turbulent dark feature, and later transformed into a dark cyclone fully formed by January 2022. We compare the evolution into a FFR of Clyde's Spot with the formation of a FFR observed by Voyager 2 in 1979 in the South South Temperate Belt (SSTB) after a convective outburst in a cyclone that also developed a two-lobed shape. We also discuss the contemporaneous evolution of an additional cyclone of the STB, which was similar to the one were Clyde's Spot developed. This cyclone did not exhibit visible internal convective activity, and transformed from pale white in 2019, with low contrast with the environment, to dark red in 2020, and thus, was very similar to the outcome of the second storm. This cyclone became bright again in 2021 after interacting with Oval BA. We present observations of these phenomena obtained by amateur astronomers, ground-based telescopes, Hubble Space Telescope and Junocam. This study reveals that short-lived small storms that are active for only a few days can produce complex longterm changes that extend over much larger areas than those initially covered by the storms. In a second paper [In tilde urrigarro et al., 2022] we use the EPIC numerical model to simulate these storms and study moist convection in closed cyclones.We are very thankful to the large community of amateur observers operating small telescopes that submit their Jupiter observations to databases such as PVOL and ALPO-Japan. We are also grateful to two anonymous reviewers for their comments that improved the clarity of this paper. This work has been supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/and by Grupos Gobierno Vasco IT1366-19. PI acknowledges a PhD scholarship from Gobierno Vasco. GSO and TM were supported by NASA with funds distributed to the Jet Propulsion Laboratory, California Institute of Technology under contract 80NM0018D0004. C. J. Hansen was sup-ported by funds from NASA, USA to the Juno mission via the Planetary Science Institute. IOE was supported by a contract funded by Europlanet 2024 RI to navigate Junocam images, now available as maps in PVOL at http://pvol2.ehu.eus. Europlanet 2024 RI has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 871149. G.S. Orton, S. R. Brueshaber, T. W. Momary, K. H. Baines and E. K. Dahl were visiting Astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract 80HQTR19D0030 with the National Aeronautics and Space Administration. In addition, support from NASA Juno Participating Scientist award 80NSSC19K1265 was provided to M.H. Wong. This work has used data acquired from the NASA/ESA Hubble Space Telescope (HST) , which is operated by the Association of 807 Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These HST observations are associated with several HST observing programs: GO/DD 14661 (PI: M.H. Wong) , GO/DD 15665 (PI: I. de Pater) , GO/DD 15159 (PI: M. H. Wong) , GO/DD 15502 (PI: A. Simon) , GO/DD 14661 (PI: M. H. Wong) , GO/DD 16074 (PI: M.H. Wong) , GO/DD 16053 (PI: I. de Pater) , GO/DD 15929 (PI: A. Simon) , GO/DD 16269 (PI: A. Simon) . PlanetCam observations were collected at the Centro Astronomico Hispanico en Andalucia (CAHA) , operated jointly by the Instituto de Astrofisica de Andalucia (CSIC) and the Andalusian Universities (Junta de Andalucia) . This work was enabled by the location of the IRTF and Gemini North telescopes within the Mauakea Science Reserve, adjacent to the summit of Maunakea. We are grateful for the privilege of observing Kaawela (Jupiter) from a place that is unique in both its astronomical quality and its cultural signifi-cance. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS) . Voyager 2 images were accessed through The PDS Ring-Moon Systems Nodes OPUS search service

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate
    corecore