421 research outputs found

    The role of temperature and Coulomb correlation in stabilization of CsCl-phase in FeS under pressure

    Full text link
    The iron-sulfur system is important for planetary interiors and is intensely studied, particularly for better understanding of the cores of Mars and Earth. Yet, there is a paradox about high-pressure stability of FeS: ab initio global optimization (at DFT level) predicts a Pmmn phase (with a distorted rocksalt structure) to be stable at pressures above ~120 GPa, which has not yet been observed in the experiments that instead revealed a CsCl-type phase which, according to density functional calculations, should not be stable. Using quasiharmonic free energy calculations and the dynamical mean field theory, we show that this apparent discrepancy is removed by proper account of electron correlations and entropic effects.Comment: 5 pages, 3 figure

    Velo-Cardio-Facial Syndrome

    Get PDF
    Purpose of review: Velo-cardio-facial syndrome has emerged from obscurity to become one of the most researched disorders this past decade. It is one of the most common genetic syndromes in humans, the most common contiguous gene syndrome in humans, the most common syndrome of cleft palate, and the most common syndrome of conotruncal heart malformations. Velo-cardio-facial syndrome has an expansive phenotype, a factor reflected in the wide range of studies that cover both clinical features and molecular genetics. In this review, we cover multiple areas of research during the past year, including psychiatric disorders, neuroimaging, and the delineation of clinical features. Recent findings: The identification of candidate genes for heart anomalies, mental illness, and other clinical phenotypes has been reported in the past year with a focus on TBX1 for cardiac and craniofacial phenotypes and COMT and PRODH for psychiatric disorders. The expansive phenotype of velo-cardio-facial syndrome continues to grow with new behavioral and structural anomalies reported. Treatment issues are beginning to draw attention, although most authors continue to focus on diagnostic issues. Summary: Its high population prevalence, estimated to be as common as 1:2000 has sparked a large amount of research, as has the model the syndrome serves for identifying the causes of mental illness and learning disabilities, but it is obvious that more information is needed. Intensive scrutiny of velo-cardio-facial syndrome will undoubtedly continue for many years to come with the hope that researchers will turn more of their attention to treatment and treatment outcomes

    Old puzzle of incommensurate crystal structure of calaverite AuTe2 and predicted stability of novel AuTe compound

    Full text link
    Gold is a very inert element, which forms relatively few compounds. Among them is a unique material-mineral calaverite, AuTe2. Besides being the only compound in nature from which one can extract gold on an industrial scale, it is a rare example of a natural mineral with incommensurate crystal structure. Moreover, it is one of few systems based on Au, which become superconducting (at elevated pressure or doped by Pd and Pt). Using ab initio calculations we theoretically explain these unusual phenomena in the picture of negative charge-transfer energy and self-doping, with holes being largely in the Te 5p bands. This scenario naturally explains incommensurate crystal structure of AuTe2, and it also suggests a possible mechanism of superconductivity. An ab initio evolutionary search for stable compounds in the Au-Te system confirms stability of AuTe2 and AuTe3 and leads to a prediction of an as yet unknown stable compound AuTe, which until now has not been synthesized. © 2018 National Academy of Sciences. All rights reserved.ACKNOWLEDGMENTS. We are grateful to G. Sawatzky, S.-W. Cheong, P. Becker, and L. Bohaty for discussions. This work was supported by the UralBranch of Russian Academy of Sciences (18-10-2-37), by the RussianFoundation of Basic Research (16-32-60070), by the Federal Agency of Scientific Organizations (“spin” AAAA-A18-118020290104-2), by the Russian Ministry of Science and High Education (02.A03.21.0006), by Russian President Council on Science (MD-916.2017.2), by the DFG (SFB 1238), and by the German Excellence Initiative. A.R.O. thanks the Russian Science Foundation (16-13-10459). V.V.R. was supported by Project 5-100 of Moscow Institute of Physics and Technology, and computations were performed on the Rurik supercomputer

    22q11.2 Deletion Syndrome: Are Motor Deficits More Than Expected for IQ Level?

    Get PDF
    To examine motor function in children with 22q11.2 deletion syndrome (22q11.2) and a Full Scale IQ (FSIQ) comparable control group. This study was part of a prospective study of neuropsychological function in children 9 to 15 years of age with 22q11.2 and community control subjects and included children from these two populations with comparable FSIQs. Verbal IQs on the WISC-R for 40 children with 22q11.2 (88.4) and 24 community control subjects (87.2) were not different (P=.563). However, the performance IQs were (22q11.2; 81.1 vs community controls; 89.3;

    Alignment in Gamma-Hadron Families of Cosmic Rays

    Full text link
    Alignment of main fluxes of energy in a target plane is found in families of cosmic ray particles detected in deep lead X-ray chambers. The fraction of events with alignment is unexpectedly large for families with high energy and large number of hadrons. This can be considered as evidence for the existence of coplanar scattering of secondary particles in interaction of particles with superhigh energy, E0>1016E_0 > 10^{16} eV. Data analysis suggests that production of most aligned groups occurs low above the chamber and is characterized by a coplanar scattering and quasiscaling spectrum of secondaries in the fragmentation region. The most elaborated hypothesis for explanation of alignment is related to the quark-gluon string rupture. However, the problem of theoretical interpretation of our results still remains open.Comment: 15 pages, 2 tables, 6 figures (not included), Stanford University preprint SU-ITP-94-2

    Apoptosis screening of human chromosome 21 proteins reveals novel cell death regulators

    Get PDF
    The functional analysis of chromosome 21 (Chr21) proteins is of great medical relevance. This refers, in particular, to the trisomy of human Chr21, which results in Down’s syndrome, a complex developmental and neurodegenerative disease. In a previous study we analyzed 89 human Chr21 genes for the subcellular localization of their encoded proteins using a transfected-cell array technique. In the present study, the results of the follow-up investigation are presented in which 52 human Chr21 genes were over-expressed in HEK cells using the transfected-cell array platform, and the effect of this protein over-expression on the induction of apoptosis has been analyzed. We found that the over-expression of two Chr21 proteins (claudin-14 and -8) induced cell death independent of the classic caspase-mediated apoptosis. Our results strongly suggest the functional involvement of claudins in the control of the cell cycle and regulation of the cell death induction mechanism

    Down syndrome and postoperative complications after paediatric cardiac surgery: a propensity-matched analysis

    Get PDF
    OBJECTIVESThe incidence of congenital heart disease is approximately 50%, mostly related to endocardial cushion defects. The aim of our study was to investigate the postoperative complications that occur after paediatric cardiac surgery.METHODSOur perioperative data were analysed in paediatric patients with Down syndrome undergoing cardiac surgery. We retrospectively analysed the data from 2063 consecutive paediatric patients between January 2003 and December 2008. After excluding the patients who died or had missing data, the analysed database (before propensity matching) contained 129 Down patients and 1667 non-Down patients. After propensity matching, the study population comprised 222 patients and 111 patients had Down syndrome.RESULTSBefore propensity matching, the occurrences of low output syndrome (21.2 vs 32.6%, P = 0.003), pulmonary complication (14 vs 28.7%, P < 0.001) and severe infection (11.9 vs 22.5%, P = 0.001) were higher in the Down group. Down patients were more likely to have prolonged mechanical ventilation [median (interquartile range) 22 (9-72) h vs 49 (24-117) h, P = 0.007]. The total intensive care unit length of stay [6.9 (4.2-12.4) days vs 8.3 (5.3-13.2) days, P = 0.04] and the total hospital length of stay [17.3 (13.3-23.2) days vs 18.3 (15.1-23.6) days, P = 0.05] of the Down patients were also longer. Mortality was similar in the two groups before (3.58 vs 3.88%, P = 0.86) and after (5.4 vs 4.5%, P = 1.00) propensity matching. After propensity matching, there was no difference in the occurrence of adverse events.CONCLUSIONSAfter propensity matching Down syndrome was not associated with increased mortality or complication rate following congenital cardiac surgery

    Combining PARP Inhibition with Platinum, Ruthenium or Gold Complexes for Cancer Therapy

    Get PDF
    Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity

    Oxytocin in the Circadian Timing of Birth

    Get PDF
    BACKGROUND: The molecular components determining the timing for birth remain an incompletely characterized aspect of reproduction, with important conceptual and therapeutic ramifications for management of preterm, post-term and arrested labor. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that oxytocin mediates circadian regulation of birth, we evaluated parturition timing following shifts in light cycles in oxytocin (OT)-deficient mice. We find that, in contrast to wild type mice that do not shift the timing of birth following a 6-h advance or delay in the light cycle, OT-deficient mice delivered at random times of day. Moreover, shifts in the light-dark cycle of gravid wild type mice have little impact on the pattern of circadian oxytocin release. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate oxytocin plays a critical role in minimizing labor disruption due to circadian clock resetting
    corecore