5 research outputs found

    Ultrafast photodynamics of ZnO solar cells sensitized with the organic indoline derivative D149

    Get PDF
    Thesis (PhD)--Stellenbosch University, 2014.ENGLISH ABSTRACT: The initial charge transfer from dye molecules' excited states to the conduction band of a semiconductor, after absorption of visible light by the former, is critical to the performance of Dye sensitized Solar Cells (DSC). In a ZnO-based DSC sensitized by the organic indoline derivative D149, the dynamics associated with charge transfer are investigated with femtosecond transient absorption spectroscopy. The time-resolved measurement of the photo-initiated processes reveal electron transfer rates corresponding to excited state lifetimes of 100s of fs, consistent with previously measured high absorbed photon to current conversion efficiencies. The photo-electrode measured as an isolated system shows decay times of bound electrons in excited states of the dye to be ~150 fs and shows the subsequent emergence of absorption bands of the oxidized molecules. When the I-/I-3 redox couple is added to the system, these excited state lifetimes change and are found to be dependent on the cation in the electrolytic solution. Small cations like Li+ reduce the excited state lifetime to sub-100 fs, whilst larger cations like the organic tetrabutylammonium result in longer lifetimes of 240 fs. The action of the electrolyte can be observed by the reduced lifetime of the oxidized dye molecules' absorption bands. The effect of operating parameters and changes in the production protocol of the DSC on the primary charge injection are also investigated and reported on.AFRIKAANSE OPSOMMING: Die aanvanklike ladingsoordrag vanuit kleurstofmolekules' opgewekte toestande tot in die leidingsband van 'n halfgeleier, na absorpsie van sigbare lig deur eersgenoemde, is van kritiese belang vir die uitset van halfgeleier-gebaseerde sonkragselle wat met kleurstowwe vir absorpsie verhoging, gebind is. In hierdie werk word hierdie proses en verwante fotodinamika in die geval van 'n ZnO sonkragsel gekleur met indolien D149 ondersoek d.m.v femtosekonde-tydopgelosde absorpsiespektroskopie. Hierdie metings onthul elektron-oordragstempos wat ooreenstem met lewenstye van opgewekte toestande in die orde van 100 fs. Hierdie is met voorheen-bepaalde hoĂ« foton-tot-stroom omskakelingsdoeltreffendheid ooreenkomstig. Die foto-elektrode, as geĂŻsoleerde sisteem beskou, toon afvalstye van gebonde elektrone in opgewekte toestande van ~150 fs, en die gevolglike opkoms van absorpsie deur geoksideerde molekules word waargeneem. As die I-/I-3 redoks oplossing tot die sisteem bygevoeg word, verander die opgewekte toestande se afvalstye en toon 'n katioon-afhanklikheid. Klein katioone soos Li+ verkort die afvalstye tot onder 100 fs, terwyl groter katioone soos die organiese tetra-butielammonium langer afvalstye (240 fs) tot gevolg het. Die werking van die elektrolitiese oplossing kan waargeneem word deur die verkorte lewenstyd van die absorpsiebande wat aan die geoksideerde molekules toegeken is. Die uitwerking van operasionele parameter asook veranderinge in die produksie protokol op die primĂȘre ladingsoordrag word ondersoek en verslag daarop word gelewer

    Energy and charge transfer dynamics in DNA based light harvesting antennae

    No full text
    DNA can serve as a versatile scaffold for chromophore assemblies. For example, light-harvesting antennae have been realized by incorporating phenanthrene and pyrene building blocks into DNA strands. It was shown that by exciting at 320 nm (absorption of phenanthrene), an emission at 450 nm is observed which corresponds to a phenanthrene-pyrene exciplex. The more phenanthrenes are added into the DNA duplex, the higher is the fluorescence intensity with no significant change in quantum yield. This shows that phenanthrene acts as a donor and efficiently transfers the excitation energy to the pyrene. Up to now, the mechanism of this energy transfer and exciplex formation is not known. Therefore, we first aim at studying the photo-cycle of such DNA assemblies through transient absorption spectroscopy. Based on the results, we will explore ways to manipulate the energy transfer by application of intense THz fields. Ground as well as excited state Stark effect dynamics will be investigated

    Tunable Lifetimes of Intramolecular Charge Separated States in Molecular Donor-Acceptor Dyads

    Get PDF
    We report ultrafast transient UV–vis absorption and electrochemical spectroscopies on the photoinduced charge separation dynamics in a recently synthesized family of metal-free donor–acceptor systems, where two redox-active molecules are fused into a compact and planar structure upon annulation of a tetrathiafulvalene and a benzothiadiazole as electron donor and acceptor, respectively. We found extraordinary tunability of the lifetime of the photoinduced charge separation by more than 2 orders of magnitude (from 6 to 900 ps) upon small changes of the peripheral residues on the acceptor and the polarity of the environment. Contrary to expectations, the lifetime of the charge separation state decreases in more polar environments and with more electronegative acceptors. This study proves that such fused donor–acceptor systems give rise to a new class of electronically versatile materials whose physicochemical properties can be tuned via a targeted substitution or a suitable choice of local electrostatics

    The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale

    Get PDF
    Fluorescent carbon nanodots are a novel family of carbon-based nanoscale materials endowed with an outstanding combination of properties that make them very appealing for applications in nanosensing, photonics, solar energy harvesting and photocatalysis. One of the remarkable properties of carbon dots is their strong sensitivity to the local environment, especially to metal ions in solution. These interactions provide a testing ground for their marked photochemical properties, highlighted by many studies, and frequently driven by charge transfer events. Here we combine several optical techniques, down to femtosecond time resolution, to understand the interplay between carbon nanodots and aqueous metal ions such as CuÂČâș and ZnÂČâș. We find that copper inhibits the fluorescence of carbon dots through static and diffusional quenching mechanisms, and our measurements allow discriminating between the two. Ultrafast optical methods are then used to address the dynamics of copper-dot complexes, wherein static quenching takes place, and unveil the underlying complexity of their photocycle. We propose an initial increase of electronic charge on the surface of the dot, upon photo-excitation, followed by a partial electron transfer to the nearby ion, with 0.2 ps and 1.9 ps time constants, and finally a very fast (â‰Ș1 ps) non-radiative electron–hole recombination which brings the system back to the ground state. Notably, we find that the electron transfer stage is governed by an ultrafast water rearrangement around photo-excited dots, pointing out the key role of solvent interactions in the photo-physics of these systems

    High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge

    No full text
    A new route to efficient generation of THz pulses with high-energy was demonstrated using semiconductor materials pumped at an infrared wavelength sufficiently long to suppress both two- and three-photon absorption and associated free-carrier absorption at THz frequencies. For pumping beyond the three-photon absorption edge, the THz generation efficiency for optical rectification of femtosecond laser pulses with tilted intensity front in ZnTe was shown to increase 3.5 times, as compared to pumping below the absorption edge. The four-photon absorption coefficient of ZnTe was estimated to be ÎČ₄=(4±1)×10⁻⁔ cm⁔/GWÂł. THz pulses with 14 ÎŒJ energy were generated with as high as 0.7% efficiency in ZnTe pumped at 1.7 ”m. It is shown that scaling the THz pulse energy to the mJ level by increasing the pump spot size and pump pulse energy is feasible
    corecore