3,955 research outputs found
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Strong electronic correlations pose one of the biggest challenges to solid
state theory. We review recently developed methods that address this problem by
starting with the local, eminently important correlations of dynamical mean
field theory (DMFT). On top of this, non-local correlations on all length
scales are generated through Feynman diagrams, with a local two-particle vertex
instead of the bare Coulomb interaction as a building block. With these
diagrammatic extensions of DMFT long-range charge-, magnetic-, and
superconducting fluctuations as well as (quantum) criticality can be addressed
in strongly correlated electron systems. We provide an overview of the
successes and results achieved---hitherto mainly for model Hamiltonians---and
outline future prospects for realistic material calculations.Comment: 60 pages, 42 figures, replaced by the version to be published in Rev.
Mod. Phys. 201
Recommended from our members
Resonant Auger Effect at High X-Ray Intensity
The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties
Projection on higher Landau levels and non-commutative geometry
The projection of a two dimensional planar system on the higher Landau levels
of an external magnetic field is formulated in the language of the non
commutative plane and leads to a new class of star products.Comment: 12 pages, latex, corrected versio
- …