90 research outputs found

    The Role of Caspases in Alzheimer\u27s Disease; Potential Novel Therapeutic Opportunities

    Get PDF
    Although apoptosis plays a critical role in molding the CNS into its final appearance and function, inappropriate activation of this pathway in the aging brain may contribute to neurodegeneration. In Alzheimer’s disease (AD), an overwhelming body of evidence supports the activation of apoptosis in general, and caspases specifically as an early event that may not only contribute to neurodegeneration but also promote the underlying pathology associated with this disease. Therefore, caspase inhibitors may provide an effective strategy for treating AD. However, despite the compelling evidence indicating a role for caspases in disease progression, chronic treatment with caspase inhibitors in animal models of AD has never been undertaken. In this review the role of caspases in AD will be addressed, including recent studies utilizing in vivo transgenic mouse models of tauopathies. In addition, a discussion of the therapeutic value and dangers of targeting caspase inhibition in the treatment of AD using caspase inhibitors such as Q-VD-OPh will be evaluated

    Caspase-Cleaved TAR DNA Binding Protein-43 is a Major Pathological Finding in Alzheimer’s Disease

    Get PDF
    The TAR DNA binding protein-43 (TDP-43) has been identified as a major constituent of inclusions found in frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). To determine a possible role for TDP-43 in Alzheimer’s disease (AD), a site-directed caspase-cleavage antibody to TDP-43 based upon a known caspase-3 cleavage consensus site within TDP-43 at position D219 was designed. In vitro, this antibody labeled the predicted 25 kDa caspase-cleavage fragment of TDP-43 without labeling full-length TDP-43 following digestion of recombinant TDP-43 with caspase-3 or treatment of Hela cells with staurosporine. Application of this antibody in postmortem brain sections indicated the presence of caspase-cleaved TDP-43 in Hirano bodies, tangles, reactive astrocytes and neuritic plaques of the AD brain. Caspase-cleaved TDP-43 also co-localized with ubiquitin labeled neurons as well as dystrophic neurites within plaque regions. These results suggest that caspase-cleaved TDP-43 is a major pathological finding in AD and may contribute to the neurodegeneration associated with this disease

    Caspase-Cleaved TAR DNA-Binding Protein-43 in Parkinson’s Disease and Dementia with Lewy Bodies

    Get PDF
    Background: TAR DNA-binding protein-43 (TDP-43) proteinopathies are classified based upon the extent of modified TDP-43 and include a growing number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin immunoreactive, tau-negative inclusions (FTLD-U) and FTLD with motor neuron disease (FTLD-MND). Objective: The purpose of the study was to examine whether proteolytic modifications of TDP-43 are a relevant finding in Parkinson’s disease (PD) and dementia with Lewy Bodies (DLB). Methods: A novel site-directed caspase-cleavage antibody, termed TDP caspase-cleavage product antibody (TDPccp), was utilized based upon a known caspase-3 cleavage consensus site within TDP-43 at position 219. Results: Application of this antibody to postmortem brain sections from PD and DLB revealed the presence of caspase-cleaved TDP-43 in Lewy bodies and Hirano bodies in all cases examined. Co-localization of TDPccp with an antibody to alpha-synuclein (α-Syn), which served as a general marker for Lewy bodies, was evident within the substantia nigra in both alpha-synucleinopathies. Interestingly, the TDPccp antibody detected a greater number of Lewy bodies in PD and DLB compared to the α-Syn antibody. In addition, a semi-quantitative analysis in both diseases confirmed this finding by indicating that the percent of caspase-cleaved TDP-43 single-labeled Lewy bodies was approximately twice the percent that of α-Syn labeling (in DLB 13.4% vs. 5.5%, while in PD 34.6% vs. 17.6%, respectively). Conclusion: Collectively, these data have identified caspase-cleaved TDP-43 as a primary component of Lewy and Hirano bodies in PD and DLB, and suggest the TDPccp antibody is an effective marker for the detection of Lewy bodies in these neurodegenerative diseases

    Caspase-Cleaved Glial Fibrillary Acidic Protein Within Cerebellar White Matter of the Alzheimer\u27s Disease Brain

    Get PDF
    Although the cerebellum is generally thought of as an area spared of Alzheimer\u27s disease (AD) pathology, recent evidence suggests that balance and mobility dysfunction may be magnified in affected individuals. In the present study, we sought to determine the degree of pathological changes within the cerebellum utilizing an antibody that specifically detects caspase-cleaved GFAP within degenerating astrocytes. Compared to control subjects, application of this antibody, termed the GFAP caspase-cleavage product (GFAPccp) antibody, revealed widespread labeling in cerebellar white matter with little staining observed in grey matter. Staining was observed within damaged astrocytes, was often localized near blood vessels and co-localized with other markers of apoptosis including TUNEL and caspase-cleaved tau. Of interest was the association of beta-amyloid deposition in white matter together with GFAPccp in cerebellar AD sections. In contrast, utilizing the tangle marker, PHF-1, neuritic pathology was completely absent in AD cerebellar sections. It is suggested that the observed pathological changes found in the white matter of the cerebellum may contribute to the declined motor performance in AD

    Autism as the Early Closure of a Neuroplastic Critical Period Normally Seen in Adolescence

    Get PDF
    The most severe cases of autism are diagnosed by extreme social dysfunction and other behavioral abnormalities. A number of genetic studies have been conducted to correlate behavioral phenotypes to genetic dysfunctions, but no “autism gene” has yet been discovered. In addition, environmental factors have been found to influence the development of autistic traits with high probability. This review will examine the role of a shortened period of neuroplasticity as a unifying feature of the autistic phenotype. The neuroplastic period of interest normally extends into adolescence, allowing for neural integration and the development of language and social skills. Early closure of this period may result in a shortened period of development, forcing the brain to rely on underdeveloped structures

    Clinical Trials in Alzheimer’s Disease: A Hurdle in the Path of Remedy

    Get PDF
    Human clinical trials seek to ameliorate the disease states and symptomatic progression of illnesses that, as of yet, are largely untreatable according to clinical standards. Ideally, clinical trials test “disease-modifying drugs,” i.e., therapeutic agents that specifically modify pathological features or molecular bases of the disease and would presumably have a large impact on disease progression. In the case of Alzheimer’s disease (AD), however, this approach appears to have stalled progress in the successful development of clinically useful therapies. For the last 25 years, clinical trials involving AD have centered on beta-amyloid (Aβ) and the Aβ hypothesis of AD progression and pathology. According to this hypothesis, the progression of AD begins following an accumulation of Aβ peptide, leading to eventual synapse loss and neuronal cell death: the true overriding pathological feature of AD. Clinical trials arising from the Aβ hypothesis target causal steps in the pathway in order to reduce the formation of Aβ or enhance clearance, and though agents have been successful in this aim, they remain unsuccessful in rescuing cognitive function or slowing cognitive decline. As such, further use of resources in the development of treatment options for AD that target Aβ, its precursors, or its products should be reevaluated. The purpose of this review was to give an overview of how human clinical trials are conducted in the USA and to assess the results of recent failed trials involving AD, the majority of which were based on the Aβ hypothesis. Based on these current findings, it is suggested that lowering Aβ is an unproven strategy, and it may be time to refocus on other targets for the treatment of this disease including pathological forms of tau

    Identification of an Amino-Terminal Fragment of Apolipoprotein E4 that Localizes to Neurofibrillary Tangles of the Alzheimer’s Disease Brain

    Get PDF
    Although the risk factor for harboring the apolipoprotein E4 (apoE4) allele in late-onset Alzheimer’s disease (AD) is well known, the mechanism by which apoE4 contributes to AD pathogenesis has yet to be clarified. Preferential cleavage of the ApoE4 isoform relative to other polymorphic forms appears to be significant, as the resulting fragments are associated with hallmarks of AD. To examine the possible role of apoE4 proteolysis in AD, we designed a site-directed antibody directed at position D172, which would yield a predicted amino-terminal fragment previously identified in AD brain extracts. Western blot analysis utilizing this novel antibody, termed the amino-terminal apoE4 cleavage fragment (nApoE4CF) Ab consistently identified the predicted amino-terminal fragment (~18 kDa) in several commercially available forms of human recombinant apoE4 purified from E. coli. Mass spectrometry confirmed the identity of this 18 kDa fragment as being an amino-terminal fragment of apoE4. Immunohistochemical experiments indicated the nApoE4CF Ab specifically labeled neurofibrillary tangles (NFTs) in AD frontal cortex sections that colocalized with the mature tangle marker PHF-1. Taken together, these results suggest a novel cleavage event of apoE4, generating an amino-terminal fragment that localizes within NFTs of the AD brain

    Caspase-Cleaved Tau Co-Localizes with Early Tangle Markers in the Human Vascular Dementia Brain

    Get PDF
    Vascular dementia (VaD) is the second most common form of dementia in the United States and is characterized as a cerebral vessel vascular disease that leads to ischemic episodes. Whereas the relationship between caspase-cleaved tau and neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD) has been previously described, whether caspase activation and cleavage of tau occurs in VaD is presently unknown. To investigate a potential role for caspase-cleaved tau in VaD, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing a well-characterized antibody that specifically detects caspase-cleaved tau truncated at Asp421. Application of this antibody (TauC3) revealed consistent labeling within NFTs, dystrophic neurites within plaque-rich regions and corpora amylacea (CA) in the human VaD brain. Labeling of CA by the TauC3 antibody was widespread throughout the hippocampus proper, was significantly higher compared to age matched controls, and co-localized with ubiquitin. Staining of the TauC3 antibody co-localized with MC-1, AT8, and PHF-1 within NFTs. Quantitative analysis indicated that roughly 90% of PHF-1-labeled NFTs contained caspase-cleaved tau. In addition, we documented the presence of active caspase-3 within plaques, blood vessels and pretangle neurons that co-localized with TauC3. Collectively, these data support a role for the activation of caspase-3 and proteolytic cleavage of TauC3 in VaD providing further support for the involvement of this family of proteases in NFT pathology

    Proteolytic Cleavage of Apolipoprotein E in the Down Syndrome Brain

    Get PDF
    Down syndrome (DS) is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Many of the neuropathological features of early-onset Alzheimer’s disease (AD) including senile plaques and neurofibrillary tangles (NFTs) are also present in people with DS as a result of triplication of the amyloid precursor gene on chromosome 21. Evidence suggests that harboring one or both apolipoprotein E4 (APOE4) alleles may increase the risk for AD due to the proteolytic cleavage of apoE4 and a subsequent loss of function. To investigate a role for the apoE proteolysis in vivo, we compared three autopsy groups; 7 DS with AD neuropathology cases over 40 years, 5 young DS cases without AD pathology under 40 years (YDS) and 5 age-matched control cases over 40 years by immunohistochemistry utilizing an antibody that detects the amino-terminal fragment of apoE. Application of this antibody, termed the amino-terminal apoE fragment antibody (nApoECF) revealed labeling of pyramidal neurons in the frontal cortex of YDS cases, whereas in the DS-AD group, labeling with nApoECF was prominent within NFTs. NFT labeling with nApoECF was significantly greater in the hippocampus versus the frontal cortex in the same DS-AD cases, suggesting a regional distribution of truncated apoE. Colocalization immunofluorescence experiments indicated that 52.5% and 53.2% of AT8- and PHF-1-positive NFTs, respectively, also contained nApoECF. Collectively, these data support a role for the proteolytic cleavage of apoE in DS and suggest that apoE fragmentation is closely associated with NFTs

    Depletion of Beclin-1 Due to Proteolytic Cleavage by Caspases in the Alzheimer\u27s Disease Brain

    Get PDF
    The Beclin-1 protein is essential for the initiation of autophagy and recent studies suggest this function may be compromised in Alzheimer’s disease (AD). In addition, in vitro studies have supported a loss of function of Beclin-1 due to proteolytic modification by caspases. In the present study we examined whether caspase-cleavage of Beclin-1 occurs in the AD brain by designing a site-directed caspase-cleavage antibody based upon a known cleavage site within the protein at position D149. We confirmed that Beclin-1 is an excellent substrate for caspase-3 and demonstrate cleavage led to the formation of a 35 kDa C-terminal fragment labeled by our novel antibody following Western blot analysis. Application of this antibody termed Beclin-1 caspase-cleavage product antibody or BeclinCCP in frontal cortex tissue sections revealed strong immunolabeling within astrocytes that localized with plaque-regions and along blood vessels in all AD cases examined. In addition, weaker, more variable BeclinCCP labeling was also observed within neurofibrillary tangles that co-localized with the early tau conformational marker, MC-1 as well as the late tangle marker, PHF-1. Collectively, these data support a depletion of Beclin-1 in AD following caspase-cleavage
    corecore