5,743 research outputs found
Remote sensing of changes in morphology and physiology of trees under stress
Measurements on foliage samples collected from several drought and salt treated plants revealed that leaf thickness decreased with increasing severity of the drought treatment and increased with increasing severity of treatment with NaCl, but remained essentially unaffected by treatment with CaCl2. Airborne data collected by multispectral scanner indicated that false color images provide selective enhancement of a diseased area. Comparison of simulated and actual aerial color and color IR photography revealed that the color renditions of the MSS simulations agreed closely with those of the actual photography
Remote sensing applications in forestry - Remote sensing of changes in morphology and physiology of trees under stress Annual progress report
Remote sensing of changes in morphology and physiology of trees under stres
Applying Machine Learning to Catalogue Matching in Astrophysics
We present the results of applying automated machine learning techniques to
the problem of matching different object catalogues in astrophysics. In this
study we take two partially matched catalogues where one of the two catalogues
has a large positional uncertainty. The two catalogues we used here were taken
from the HI Parkes All Sky Survey (HIPASS), and SuperCOSMOS optical survey.
Previous work had matched 44% (1887 objects) of HIPASS to the SuperCOSMOS
catalogue.
A supervised learning algorithm was then applied to construct a model of the
matched portion of our catalogue. Validation of the model shows that we
achieved a good classification performance (99.12% correct).
Applying this model, to the unmatched portion of the catalogue found 1209 new
matches. This increases the catalogue size from 1887 matched objects to 3096.
The combination of these procedures yields a catalogue that is 72% matched.Comment: 8 Pages, 5 Figure
Physical simulation of wind pressure on building models at various arrangement and airflow conditions
The results of modeling and distribution of the pressure coefficient on the faces of the faces of the model of a high-rise building with a relative height of H/a = 3 and 6 are obtained under the influence of vortex flows created by an obstacle with similar geometric parameters with its lateral displacement from the longitudinal axis of the channel. The accepted range of transverse displacements is L2/a = 0.5; 1; 1.5; 2. In the range of studies, the airflow angle of 0 degrees was adopted with the maximum Reynolds number (Re) = 4.25´104. The distances between the models in the wake correspond to the calibers L1/a = 1.5; 3 and 6. A series of experiments was carried out on the basis of the theory of modeling. The experiments are based on the modeling of the model buildings under study on the basis of the similarity theory. Systematic data are obtained on the distribution of the pressure coefficients Cp on the faces of the model, depending on its location in the track of the upstream model with a change in the distance between them in the transverse direction relative to the direction of the air flow
Quantum gate characterization in an extended Hilbert space
We describe an approach for characterizing the process of quantum gates using
quantum process tomography, by first modeling them in an extended Hilbert
space, which includes non-qubit degrees of freedom. To prevent unphysical
processes from being predicted, present quantum process tomography procedures
incorporate mathematical constraints, which make no assumptions as to the
actual physical nature of the system being described. By contrast, the
procedure presented here ensures physicality by placing physical constraints on
the nature of quantum processes. This allows quantum process tomography to be
performed using a smaller experimental data set, and produces parameters with a
direct physical interpretation. The approach is demonstrated by example of
mode-matching in an all-optical controlled-NOT gate. The techniques described
are non-specific and could be applied to other optical circuits or quantum
computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version
Probabilistic state preparation of a single molecular ion by projection measurement
We show how to prepare a single molecular ion in a specific internal quantum
state in a situation where the molecule is trapped and sympathetically cooled
by an atomic ion and where its internal degrees of freedom are initially in
thermal equilibrium with the surroundings. The scheme is based on conditional
creation of correlation between the internal state of the molecule and the
translational state of the collective motion of the two ions, followed by a
projection measurement of this collective mode by atomic ion shelving
techniques. State preparation in a large number of internal states is possible.Comment: 4 pages, 2 figures, 2 table
Symmetry Protected Topological phases and Generalized Cohomology
We discuss the classification of SPT phases in condensed matter systems. We
review Kitaev's argument that SPT phases are classified by a generalized
cohomology theory, valued in the spectrum of gapped physical systems. We
propose a concrete description of that spectrum and of the corresponding
cohomology theory. We compare our proposal to pre-existing constructions in the
literature.Comment: 27 pages, 10 figures. v2: citation updat
Quantum interference from remotely trapped ions
We observe quantum interference of photons emitted by two continuously
laser-excited single ions, independently trapped in distinct vacuum vessels.
High contrast two-photon interference is observed in two experiments with
different ion species, calcium and barium. Our experimental findings are
quantitatively reproduced by Bloch equation calculations. In particular, we
show that the coherence of the individual resonance fluorescence light field is
determined from the observed interference
A diode laser stabilization scheme for 40Ca+ single ion spectroscopy
We present a scheme for stabilizing multiple lasers at wavelengths between
795 and 866 nm to the same atomic reference line. A reference laser at 852 nm
is stabilized to the Cs D2 line using a Doppler-free frequency modulation
technique. Through transfer cavities, four lasers are stabilized to the
relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked
laser is measured to be 123 kHz with respect to an independent atomic
reference, the Rb D1 line. This stability is confirmed by the comparison of an
excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation
model. The measured Allan variance of 10^(-22) at 10 s demonstrates a high
degree of stability for time scales up to 100 s.Comment: 8 pages, 11 figure
- …