7,607 research outputs found

    Failure of classical elasticity in auxetic foams

    Full text link
    A recent derivation [P.H. Mott and C.M. Roland, Phys. Rev. B 80, 132104 (2009).] of the bounds on Poisson's ratio, v, for linearly elastic materials showed that the conventional lower limit, -1, is wrong, and that v cannot be less than 0.2 for classical elasticity to be valid. This is a significant result, since it is precisely for materials having small values of v that direct measurements are not feasible, so that v must be calculated from other elastic constants. Herein we measure directly Poisson's ratio for four materials, two for which the more restrictive bounds on v apply, and two having values below this limit of 0.2. We find that while the measured v for the former are equivalent to values calculated from the shear and tensile moduli, for two auxetic materials (v < 0), the equations of classical elasticity give inaccurate values of v. This is experimental corroboration that the correct lower limit on Poisson's ratio is 0.2 in order for classical elasticity to apply.Comment: 9 pages, 2 figure

    Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean

    Get PDF
    We intercompared the cloud properties of the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) simulation output over the Atlantic Ocean. The domain averaged outgoing longwave radiation (OLR) is relatively similar across the models, but the net shortwave radiation at the top of the atmosphere (NSR) shows large differences among the models. The models capture the triple modes of cloud systems corresponding to shallow, congestus, and high clouds, although their partition in these three categories is strongly model dependent. The simulated height of the shallow and congestus peaks is more robust than the peak of high clouds, whereas cloud water content exhibits larger intermodel differences than does cloud ice content. Furthermore, we investigated the resolution dependency of the vertical profiles of clouds for NICAM (Nonhydrostatic ICosahedral Atmospheric Model), ICON (Icosahedral Nonhydrostatic), and IFS (Integrated Forecasting System). We found that the averaged mixing ratio of ice clouds consistently increased with finer grid spacing. Such a consistent signal is not apparent for the mixing ratio of liquid clouds for shallow and congestus clouds. The impact of the grid spacing on OLR is smaller than on NSR and also much smaller than the intermodel differences

    Quasi-Local Energy Flux of Spacetime Perturbation

    Full text link
    A general expression for quasi-local energy flux for spacetime perturbation is derived from covariant Hamiltonian formulation using functional differentiability and symplectic structure invariance, which is independent of the choice of the canonical variables and the possible boundary terms one initially puts into the Lagrangian in the diffeomorphism invariant theories. The energy flux expression depends on a displacement vector field and the 2-surface under consideration. We apply and test the expression in Vaidya spacetime. At null infinity the expression leads to the Bondi type energy flux obtained by Lindquist, Schwartz and Misner. On dynamical horizons with a particular choice of the displacement vector, it gives the area balance law obtained by Ashtekar and Krishnan.Comment: 8 pages, added appendix, version to appear in Phys. Rev.

    Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1

    Get PDF
    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined

    Stationary untrapped boundary conditions in general relativity

    Full text link
    A class of boundary conditions for canonical general relativity are proposed and studied at the quasi-local level. It is shown that for untrapped or marginal surfaces, fixing the area element on the 2-surface (rather than the induced 2-metric) and the angular momentum surface density is enough to have a functionally differentiable Hamiltonian, thus providing definition of conserved quantities for the quasi-local regions. If on the boundary the evolution vector normal to the 2-surface is chosen to be proportional to the dual expansion vector, we obtain a generalization of the Hawking energy associated with a generalized Kodama vector. This vector plays the role for the stationary untrapped boundary conditions which the stationary Killing vector plays for stationary black holes. When the dual expansion vector is null, the boundary conditions reduce to the ones given by the non-expanding horizons and the null trapping horizons.Comment: 11 pages, improved discussion section, a reference added, accepted for publication in Classical and Quantum Gravit

    Properties of the symplectic structure of General Relativity for spatially bounded spacetime regions

    Full text link
    We continue a previous analysis of the covariant Hamiltonian symplectic structure of General Relativity for spatially bounded regions of spacetime. To allow for near complete generality, the Hamiltonian is formulated using any fixed hypersurface, with a boundary given by a closed spacelike 2-surface. A main result is that we obtain Hamiltonians associated to Dirichlet and Neumann boundary conditions on the gravitational field coupled to matter sources, in particular a Klein-Gordon field, an electromagnetic field, and a set of Yang-Mills-Higgs fields. The Hamiltonians are given by a covariant form of the Arnowitt-Deser-Misner Hamiltonian modified by a surface integral term that depends on the particular boundary conditions. The general form of this surface integral involves an underlying ``energy-momentum'' vector in the spacetime tangent space at the spatial boundary 2-surface. We give examples of the resulting Dirichlet and Neumann vectors for topologically spherical 2-surfaces in Minkowski spacetime, spherically symmetric spacetimes, and stationary axisymmetric spacetimes. Moreover, we show the relation between these vectors and the ADM energy-momentum vector for a 2-surface taken in a limit to be spatial infinity in asymptotically flat spacetimes. We also discuss the geometrical properties of the Dirichlet and Neumann vectors and obtain several striking results relating these vectors to the mean curvature and normal curvature connection of the 2-surface. Most significantly, the part of the Dirichlet vector normal to the 2-surface depends only the spacetime metric at this surface and thereby defines a geometrical normal vector field on the 2-surface. Properties and examples of this normal vector are discussed.Comment: 46 pages; minor errata corrected in Eqs. (3.15), (3.24), (4.37) and in discussion of examples in sections IV B,
    • …
    corecore