200 research outputs found
Tunneling Conductance Between Parallel Two Dimensional Electron Systems
We derive and evaluate expressions for the low temperature {\it dc}
equilibrium tunneling conductance between parallel two-dimensional electron
systems. Our theory is based on a linear-response formalism and on
impurity-averaged perturbation theory. The disorder broadening of features in
the dependence of tunneling conductance on sheet densities and in-plane
magnetic field strengths is influenced both by the finite lifetime of electrons
within the wells and by non-momentum-conserving tunneling events. Disorder
vertex corrections are important only for weak in-plane magnetic fields and
strong interwell impurity-potential correlations. We comment on the basis of
our results on the possibility of using tunneling measurements to determine the
lifetime of electrons in the quantum wells.Comment: 14 pages, 5 Fig. not included, revtex, IUcm92-00
Supercurrent noise in quantum point contacts
Spectral density of current fluctuations in a short ballistic superconducting
quantum point contact is calculated for arbitrary bias voltages . Contrary
to a common opinion that the supercurrent flow in Josephson junctions is
coherent process with no fluctuations, we find extremely large current noise
that is {\em caused} by the supercurrent coherence. An unusual feature of the
noise, besides its magnitude, is its voltage dependence: the noise decreases
with increasing , despite the fact that the dc current grows steadily with
. At finite voltages the noise can be qualitatively understood as the shot
noise of the large charge quanta of magnitude equal to the charge
transferred during one period of Josephson oscillations.Comment: 12 pages, revtex, 2 figures by fax/conventional mail upon reques
Quantum Dynamics in Non-equilibrium Strongly Correlated Environments
We consider a quantum point contact between two Luttinger liquids coupled to
a mechanical system (oscillator). For non-vanishing bias, we find an effective
oscillator temperature that depends on the Luttinger parameter. A generalized
fluctuation-dissipation relation connects the decoherence and dissipation of
the oscillator to the current-voltage characteristics of the device. Via a
spectral representation, this result is generalized to arbitrary leads in a
weak tunneling regime.Comment: 4 pages, 1 figur
The phase-dependent linear conductance of a superconducting quantum point contact
The exact expression for the phase-dependent linear conductance of a weakly
damped superconducting quantum point contact is obtained. The calculation is
performed by summing up the complete perturbative series in the coupling
between the electrodes. The failure of any finite order perturbative expansion
in the limit of small voltage and small quasi-particle damping is analyzed in
detail. In the low transmission regime this nonperturbative calculation yields
a result which is at variance with standard tunnel theory. Our result predicts
the correct sign of the quasi-particle pair interference term and exhibits an
unusual phase-dependence at low temperatures in qualitative agreement with the
available experimental data.Comment: 12 pages (revtex) + 1 postscript figure. Submitted to Phys. Rev. Let
Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-superconductor tunnel junctions
We study the current noise spectra of a tunnel junction of a metal with
strong pairing phase fluctuation and a superconductor. It is shown that there
is a characteristic peak in the noise spectrum at the intrinsic Josephson
frequency when is smaller than the pairing gap but
larger than the pairing scattering rate. In the presence of an AC voltage, the
tunnelling current noise shows a series of characteristic peaks with increasing
DC voltage. Experimental observation of these peaks will give direct evidence
of the pair fluctuation in the normal state of high- superconductors and
from the half width of the peaks the pair decay rate can be estimated.Comment: 4 pages, 3 figure
Observation of Andreev Reflection Enhanced Shot Noise
We have experimentally investigated the quasiparticle shot noise in
NbN/MgO/NbN superconductor - insulator - superconductor tunnel junctions. The
observed shot noise is significantly larger than theoretically expected. We
attribute this to the occurrence of multiple Andreev reflection processes in
pinholes present in the MgO barrier. This mechanism causes the current to flow
in large charge quanta (Andreev clusters), with a voltage dependent average
value of m = 1+ 2 Delta/eV times the electron charge. Because of this charge
enhancement effect, the shot noise is increased by the factor m.Comment: 4 pages, 5 figures include
Lessons From The NextWave Saga: The Federal Communications Commission, The Courts, And The Use of Market Forms To Perform Public Functions
Lessons From The NextWave Saga: The Federal Communications Commission, The Courts, And The Use of Market Forms To Perform Public Functions
Electron-electron interactions and two-dimensional - two-dimensional tunneling
We derive and evaluate expressions for the dc tunneling conductance between
interacting two-dimensional electron systems at non-zero temperature. The
possibility of using the dependence of the tunneling conductance on voltage and
temperature to determine the temperature-dependent electron-electron scattering
rate at the Fermi energy is discussed. The finite electronic lifetime produced
by electron-electron interactions is calculated as a function of temperature
for quasiparticles near the Fermi circle. Vertex corrections to the random
phase approximation substantially increase the electronic scattering rate. Our
results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file;
Phys. Rev. B (in press
Mesoscopic effects in tunneling between parallel quantum wires
We consider a phase-coherent system of two parallel quantum wires that are
coupled via a tunneling barrier of finite length. The usual perturbative
treatment of tunneling fails in this case, even in the diffusive limit, once
the length L of the coupling region exceeds a characteristic length scale L_t
set by tunneling. Exact solution of the scattering problem posed by the
extended tunneling barrier allows us to compute tunneling conductances as a
function of applied voltage and magnetic field. We take into account charging
effects in the quantum wires due to applied voltages and find that these are
important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to
appear in Phys. Rev.
- …
