615 research outputs found

    Intercropping in maize silage versus solo-seeding for alfalfa establishment in Wisconsin and Idaho

    Get PDF
    Alfalfa (Medicago sativa L.) intercropping with maize (Zea mays L.) silage is being developed in the northern United States to improve the profitability and environmental sustainability of forage production. This study, conducted under rainfed conditions inWisconsin and semiarid irrigated conditions in Idaho, compared the establishment of alfalfa and dry matter yield of four intercropping systems to three conventional systems. The former systems included alfalfa interseeded at planting or the vegetative emergence (VE) stage of maize and grown with or without prohexadione growth retardant. The latter systems included alfalfa seeded in spring, summerseeded after barley (Hordeum vulgare L.), or late summer-seeded after maize silage. Spring seeded and interseeded alfalfa inWisconsin also received foliar fungicide and insecticide during establishment. During alfalfa establishment, yield of intercropped maize silage was 1.8- to 4.4-fold greater than spring-seeded alfalfa. Compared to spring-seeded alfalfa, interseeded alfalfa had similar or somewhat lower stand density but similar first cut yield the following year, provided that intercropped maize was harvested near September 1 to allow ample alfalfa fall regrowth. Shifting interseeding from maize planting to the VE stage decreased early-season alfalfa growth, but improved maize silage yield, with minor effects on alfalfa fall growth, stand density, and first cut yield. Prohexadione application had little impact on establishment or yield of interseeded alfalfa. While having high plant density, alfalfa seeded after barley or especially maize had less fall growth and low first cut yield. Overall, alfalfa establishment and yield of intercropping systems compared favorably with conventional systems

    Patterns and associations between dominant crop productions and water quality in an irrigated watershed

    Get PDF
    Irrigation consumes the largest share of freshwater resources but is a necessary practice to boost agricultural output to meet increasing global demand for food and fiber. Irrigation not only impacts water quantity but can also degrade water quality. Research efforts have explored various aspects of irrigation efficiency and irrigated crop productivity, but few studies have examined how different crops collectively modulate water utilization and water quality at the watershed scale. In this study long-term water quantity and quality monitoring data collected as part of the Conservation Effect Assessment Project (CEAP) combined with crop and evapotranspiration (ET) modeling products were used to elucidate relationships between crop and water processes in an irrigated watershed. We use a correlational approach to build relationships between water quantity and quality metrics and the fractional volumes of ET associated with major crops in the Twin Falls Canal Company irrigation tract. Results suggest that sub-watershed size and subsurface flow contribution in drainage tunnels influenced hydrologic patterns observed and led to 2 distinct groups. Group 1 sub-watersheds were large, typically included subsurface drain tunnels and had high return flow volumes and low sediment concentration while group 2 sub-watersheds were smaller in size, had low return flow volumes and high sediment concentration. Irrigation return flow volume normalized by sub-watershed area was positively associated with ET fractions of potato (Solanum tuberosum) in group 1 during the spring and summer months. Spring sediment loss per return flow volume showed a negative association with ET fractions of sugar beet and combined alfalfa (Medicago sativa) and pasture crops in group 2. A negative association was found between phosphorus (P) load per return flow volume and ET fractions of alfalfa / pasture, corn (Zea mays), dry beans (Phaseolus vulgaris), and sugar beet (Beta vulgaris) across sub-watershed groups. Nitrate (NO3-N) load per return flow volume was negatively associated with potato and corn ET fractions in group 1 especially during the spring and fall month but positively associated with dry beans over the irrigation season. While direct cause and effect were not established between crops and water quantity and quality, results from this study provide valuable information on management factors associated with various crop production systems that may control observed hydrologic response. Example of factors considered in explaining some of the observed patterns include early germination and ground coverage, tight control on soil water content, and the erosion attenuation effect of sedimentation ponds

    Langevin Simulations of Two Dimensional Vortex Fluctuations: Anomalous Dynamics and a New IVIV-exponent

    Full text link
    The dynamics of two dimensional (2D) vortex fluctuations are investigated through simulations of the 2D Coulomb gas model in which vortices are represented by soft disks with logarithmic interactions. The simulations trongly support a recent suggestion that 2D vortex fluctuations obey an intrinsic anomalous dynamics manifested in a long range 1/t-tail in the vortex correlations. A new non-linear IV-exponent a, which is different from the commonly used AHNS exponent, a_AHNS and is given by a = 2a_AHNS - 3, is confirmed by the simulations. The results are discussed in the context of earlier simulations, experiments and a phenomenological description.Comment: Submitted to PRB, RevTeX format, 28 pages and 13 figures, figures in postscript format are available at http://www.tp.umu.se/~holmlund/papers.htm

    Moving on from Weiser's Vision of Calm Computing: engaging UbiComp experiences

    Get PDF
    A motivation behind much UbiComp research has been to make our lives convenient, comfortable and informed, following in the footsteps of Weiser's calm computing vision. Three themes that have dominated are context awareness, ambient intelligence and monitoring/tracking. While these avenues of research have been fruitful their accomplishments do not match up to anything like Weiser's world. This paper discusses why this is so and argues that is time for a change of direction in the field. An alternative agenda is outlined that focuses on engaging rather than calming people. Humans are very resourceful at exploiting their environments and extending their capabilities using existing strategies and tools. I describe how pervasive technologies can be added to the mix, outlining three areas of practice where there is much potential for professionals and laypeople alike to combine, adapt and use them in creative and constructive ways

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos⁥2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin⁥(2ϕ−ϕS)\sin(2\phi-\phi_S), sin⁥(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin⁥2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ

    Structural, electronic, and magneto-optical properties of YVO3_3

    Get PDF
    Optical and magneto-optical properties of YVO3_3 single crystal were studied in FIR, visible, and UV regions. Two structural phase transitions at 75 K and 200 K were observed and established to be of the first and second order, respectively. The lattice has an orthorhombic PbnmPbnm symmetry both above 200 K as well as below 75 K, and is found to be dimerized monoclinic Pb11Pb11 in between. We identify YVO3_3 as a Mott-Hubbard insulator with the optical gap of 1.6 eV. The electronic excitations in the visible spectrum are determined by three dd-bands at 1.8, 2.4, and 3.3 eV, followed by the charge-transfer transitions at about 4 eV. The observed structure is in good agreement with LSDA+UU band structure calculations. By using ligand field considerations, we assigned these bands to the transitions to the 4A2g^4A_{2g}, 2Eg+2T1g^2E_{g} + ^2T_{1g}, and 2T2g^2T_{2g} states. The strong temperature dependence of these bands is in agreement with the formation of orbital order. Despite the small net magnetic moment of 0.01 ÎŒB\mu_B per vanadium, the Kerr effect of the order of 0.01∘0.01^\circ was observed for all three dd-bands in the magnetically ordered phase TNeˊel<116KT_{\text{N\'eel}}<116 K. A surprisingly strong enhancement of the Kerr effect was found below 75 K, reaching a maximum of 0.1∘0.1^\circ. The effect is ascribed to the non-vanishing net orbital magnetic moment.Comment: Submitted to Phys. Rev.

    Level models of continuing professional development evaluation: a grounded review and critique

    Get PDF
    Continuing professional development (CPD) evaluation in education has been heavily influenced by ‘level models’, deriving from the work of Kirkpatrick and Guskey in particular, which attempt to trace the processes through which CPD interventions achieve outcomes. This paper considers the strengths and limitations of such models, and in particular the degree to which they are able to do justice to the complexity of CPD and its effects. After placing level models within the broader context of debates about CPD evaluation, the paper reports our experience of developing such models heuristically for our own evaluation practice. It then draws on positivist, realist and constructivist traditions to consider some more fundamental ontological and epistemological questions to which they give rise. The paper concludes that level models can be used in a number of ways and with differing emphases, and that choices made about their use will need to reflect both theoretical choices and practical considerations
    • 

    corecore