29,399 research outputs found

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ

    Requirements for implementation of Kuessner and Wagner indicial lift growth functions into the FLEXSTAB computer program system for use in dynamic loads analyses

    Get PDF
    General requirements for dynamic loads analyses are described. The indicial lift growth function unsteady subsonic aerodynamic representation is reviewed, and the FLEXSTAB CPS is evaluated with respect to these general requirements. The effects of residual flexibility techniques on dynamic loads analyses are also evaluated using a simple dynamic model

    Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars

    Full text link
    We propose that the observed misalignment between extra-solar planets and their hot host stars can be explained by angular momentum transport within the host star. Observations have shown that this misalignment is preferentially around hot stars, which have convective cores and extended radiative envelopes. This situation is amenable to substantial angular momentum transport by internal gravity waves (IGW) generated at the convective-radiative interface. Here we present numerical simulations of this process and show that IGW can modulate the surface rotation of the star. With these two- dimensional simulations we show that IGW could explain the retrograde orbits observed in systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity objects will await future three- dimensional simulations. We note that these results also imply that individual massive stars should show temporal variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ

    Human-agent collectives

    No full text
    We live in a world where a host of computer systems, distributed throughout our physical and information environments, are increasingly implicated in our everyday actions. Computer technologies impact all aspects of our lives and our relationship with the digital has fundamentally altered as computers have moved out of the workplace and away from the desktop. Networked computers, tablets, phones and personal devices are now commonplace, as are an increasingly diverse set of digital devices built into the world around us. Data and information is generated at unprecedented speeds and volumes from an increasingly diverse range of sources. It is then combined in unforeseen ways, limited only by human imagination. People’s activities and collaborations are becoming ever more dependent upon and intertwined with this ubiquitous information substrate. As these trends continue apace, it is becoming apparent that many endeavours involve the symbiotic interleaving of humans and computers. Moreover, the emergence of these close-knit partnerships is inducing profound change. Rather than issuing instructions to passive machines that wait until they are asked before doing anything, we will work in tandem with highly inter-connected computational components that act autonomously and intelligently (aka agents). As a consequence, greater attention needs to be given to the balance of control between people and machines. In many situations, humans will be in charge and agents will predominantly act in a supporting role. In other cases, however, the agents will be in control and humans will play the supporting role. We term this emerging class of systems human-agent collectives (HACs) to reflect the close partnership and the flexible social interactions between the humans and the computers. As well as exhibiting increased autonomy, such systems will be inherently open and social. This means the participants will need to continually and flexibly establish and manage a range of social relationships. Thus, depending on the task at hand, different constellations of people, resources, and information will need to come together, operate in a coordinated fashion, and then disband. The openness and presence of many distinct stakeholders means participation will be motivated by a broad range of incentives rather than diktat. This article outlines the key research challenges involved in developing a comprehensive understanding of HACs. To illuminate this agenda, a nascent application in the domain of disaster response is presented

    Dynamics of coherent structures in a plane mixing layer

    Get PDF
    An incompressible, time developing 3-D mixing layer with idealized initial conditions was simulated numerically. Consistent with the suggestions from experimental measurements, the braid region between the dominant spanwise vortices or rolls develops longitudinal vortices or ribs, which are aligned upstream and downstream of a roll and produce spanwise distortion of the rolls. The process by which this distortion occurs is explained by studying a variety of quantities of dynamic importance (e.g., production of enstrophy, vortex stretching). Other quantities of interest (dissipation, helicity density) are also computed and discussed. The currently available simulation only allows the study of the early evolution (before pairing) of the mixing layer. New simulations in progress will relieve this restriction

    Is there any chlorine monoxide in the stratosphere?

    Get PDF
    A ground based search for the 856.50137/cm R(9.5) and for the 859.76765 R(12.5) transitions of stratospheric (Cl-35)O was made in the solar absorption mode using an infrared heterodyne spectrometer. Lines due to stratospheric HNO3 and tropospheric OCS were detected, at about 0.3% absorption levels. The expected lines of ClO in this same region were not detected, even though the optical depth of the ClO lines should be on the order of 0.2% using currently accepted ClO abundances. These infrared measurements suggest that stratospheric ClO is at least a factor of 7 less abundant than is indicated by indirect in situ fluorescence measurements, and the upper limit of 2.4x10 to the 13th power molecules/sq cm to the integrated column density of ClO is a factor of over 4 less than is indicted by microwave measurements. Results imply that the release of fluorocarbon precursors of ClO may be significantly less important for the destruction of stratospheric ozone than was previously thought

    Shedding Light on Student Learning Through the Use of Lightboard Videos

    Get PDF
    This mixed-method study examined the effect of Lightboard videos on student learning and perceptions in a Flipped Classroom Model (FCM). The study targeted 68 civil engineering undergraduate students at a 4-year public university in Southeastern USA. Lightboard videos were intentionally alternated between two consecutive semesters. Within the same section of the course, classes without Lightboard videos served as a control group and classes with Lightboard videos served as a study group. Both sections were taught by the same instructor utilizing the same materials and assessments for the class. Student academic performance was measured using in-class assignments. Additional quantitative and qualitative data were collected through an end-of-semester survey. Data show a modest academic performance increase on the overall score on in-class assignments and an improvement of average student scores on 69.2% of the in-class assignments in the study group. The overall means on the Likert scale survey showed a strong endorsement of Lightboard videos for understanding, engagement and satisfaction. Students commented positively on the collaborative aspect of in-class problem solving in FCM
    corecore