202 research outputs found
Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors
The flux-noise spectra around the Kosterlitz-Thouless transition are obtained
from simulations of the two-dimensional resistively shunted junction model. In
particular the dependence on the distance between the pick-up coil and the
sample is investigated. The typical experimental situation corresponds to the
large- limit and a simple relation valid in this limit between the complex
impedance and the noise spectra is clarified. Features, which distinguish
between the large- and small- limit, are identified and the possibility of
observing these features in experiments is discussed.Comment: 12 pages including 8 figures, submitted to Phys. Rev.
Short-term post-harvest stress that affects profiles of volatile organic compounds and gene expression in rocket salad during early post-harvest senescence
Once harvested, leaves undergo a process of senescence which shares some features with developmental senescence. These include changes in gene expression, metabolites, and loss of photosynthetic capacity. Of particular interest in fresh produce are changes in nutrient content and the aroma, which is dependent on the profile of volatile organic compounds (VOCs). Leafy salads are subjected to multiple stresses during and shortly after harvest, including mechanical damage, storage or transport under different temperature regimes, and low light. These are thought to impact on later shelf life performance by altering the progress of post-harvest senescence. Short term stresses in the first 24 h after harvest were simulated in wild rocket (Diplotaxis tenuifolia). These included dark (ambient temperature), dark and wounding (ambient temperature), and storage at 4 \ub0C in darkness. The effects of stresses were monitored immediately afterwards and after one week of storage at 10 \ub0C. Expression changes in two NAC transcription factors (orthologues of ANAC059 and ANAC019), and a gene involved in isothiocyanate production (thiocyanate methyltransferase, TMT) were evident immediately after stress treatments with some expression changes persisting following storage. Vitamin C loss and microbial growth on leaves were also affected by stress treatments. VOC profiles were differentially affected by stress treatments and the storage period. Overall, short term post-harvest stresses affected multiple aspects of rocket leaf senescence during chilled storage even after a week. However, different stress combinations elicited different responses
Gene expression analysis of rocket salad under pre-harvest and postharvest stresses : a transcriptomic resource for Diplotaxis tenuifolia
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries
Langevin Simulations of Two Dimensional Vortex Fluctuations: Anomalous Dynamics and a New -exponent
The dynamics of two dimensional (2D) vortex fluctuations are investigated
through simulations of the 2D Coulomb gas model in which vortices are
represented by soft disks with logarithmic interactions. The simulations
trongly support a recent suggestion that 2D vortex fluctuations obey an
intrinsic anomalous dynamics manifested in a long range 1/t-tail in the vortex
correlations. A new non-linear IV-exponent a, which is different from the
commonly used AHNS exponent, a_AHNS and is given by a = 2a_AHNS - 3, is
confirmed by the simulations. The results are discussed in the context of
earlier simulations, experiments and a phenomenological description.Comment: Submitted to PRB, RevTeX format, 28 pages and 13 figures, figures in
postscript format are available at http://www.tp.umu.se/~holmlund/papers.htm
1/f Noise in Electron Glasses
We show that 1/f noise is produced in a 3D electron glass by charge
fluctuations due to electrons hopping between isolated sites and a percolating
network at low temperatures. The low frequency noise spectrum goes as
\omega^{-\alpha} with \alpha slightly larger than 1. This result together with
the temperature dependence of \alpha and the noise amplitude are in good
agreement with the recent experiments. These results hold true both with a
flat, noninteracting density of states and with a density of states that
includes Coulomb interactions. In the latter case, the density of states has a
Coulomb gap that fills in with increasing temperature. For a large Coulomb gap
width, this density of states gives a dc conductivity with a hopping exponent
of approximately 0.75 which has been observed in recent experiments. For a
small Coulomb gap width, the hopping exponent approximately 0.5.Comment: 8 pages, Latex, 6 encapsulated postscript figures, to be published in
Phys. Rev.
Flux noise in high-temperature superconductors
Spontaneously created vortex-antivortex pairs are the predominant source of
flux noise in high-temperature superconductors. In principle, flux noise
measurements allow to check theoretical predictions for both the distribution
of vortex-pair sizes and for the vortex diffusivity. In this paper the
flux-noise power spectrum is calculated for the highly anisotropic
high-temperature superconductor Bi-2212, both for bulk crystals and for
ultra-thin films. The spectrum is basically given by the Fourier transform of
the temporal magnetic-field correlation function. We start from a
Berezinskii-Kosterlitz-Thouless type theory and incorporate vortex diffusion,
intra-pair vortex interaction, and annihilation of pairs by means of a
Fokker-Planck equation to determine the noise spectrum below and above the
superconducting transition temperature. We find white noise at low frequencies
omega and a spectrum proportional to 1/omega^(3/2) at high frequencies. The
cross-over frequency between these regimes strongly depends on temperature. The
results are compared with earlier results of computer simulations.Comment: 9 pages, 4 PostScript figures, to be published in Phys. Rev.
Vortex dynamics for two-dimensional XY models
Two-dimensional XY models with resistively shunted junction (RSJ) dynamics
and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is
verified that the vortex response is well described by the Minnhagen
phenomenology for both types of dynamics. Evidence is presented supporting that
the dynamical critical exponent in the low-temperature phase is given by
the scaling prediction (expressed in terms of the Coulomb gas temperature
and the vortex renormalization given by the dielectric constant
) both for RSJ and TDGL
and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature
phase. The results are discussed and compared with the results of other recent
papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio
Small-Scale Vertical Movements of Summer Flounder Relative to Diurnal, Tidal, and Temperature Changes
Observation of animal movements on small spatial scales provides a means to understand how large-scale species distributions are established from individual behavioral decisions. Small-scale vertical movements of 14 Summer Flounder Paralichthys dentatus residing in Chesapeake Bay were observed by using depth data collected with archival tags. A generalized linear mixed model was employed to examine the relationship between these vertical movements and environmental covariates such as tidal state, time of day, lunar phase, and temperature. Vertical movements increased with warming water temperatures, and this pattern was most apparent at night and during rising and falling tides. Fish generally exhibited greater vertical movements at night, but the difference between vertical movements in the day and those at night decreased as fish increased in size. Results from this study fill a void in understanding the small-scale movements of Summer Flounder and could be incorporated into individual-based models to investigate how species distributions develop in response to environmental conditions
Temperature and Frequency Dependence of Complex Conductance of Ultrathin YBa2Cu3O7-x Films: A Study of Vortex-Antivortex Pair Unbinding
We have studied the temperature dependencies of the complex sheet conductance
of 1-3 unit cell (UC) thick YBa2Cu3O7-x films sandwiched between semiconducting
Pr0.6Y0.4Ba2Cu3O7-x layers at high frequencies. Experiments have been carried
out in a frequency range between: 2 - 30 MHz with one-spiral coil technique,
100 MHz - 1 GHz frequency range with a new technique using the spiral coil
cavity and at 30 GHz by aid of a resonant cavity technique. The real and
imaginary parts of the mutual-inductance between a coil and a film were
measured and converted to complex conductivity by aid of the inversion
procedure. We have found a quadratic temperature dependence of the kinetic
inductance, L_k^-1(T), at low temperatures independent of frequency, with a
break in slope at T^dc_BKT, the maximum of real part of conductance and a large
shift of the break temperature and the maximum position to higher temperatures
with increasing frequency. We obtain from these data the universal ratio
T^dc_BKT/L_k^-1(T^dc_BKT) = 25, 25, and 17 nHK for 1-, 2- and 3UC films,
respectively in close agreement with theoretical prediction of 12 nHK for
vortex-antivortex unbinding transition. The activated temperature dependence of
the vortex diffusion constant was observed and discussed in the framework of
vortex-antivortex pair pinning.
PACS numbers: 74.80.Dm, 74.25.Nf, 74.72.Bk, 74.76.BzComment: PDF file, 10 pages, 6 figures, to be published in J. Low Temp. Phys.;
Proc. of NATO ARW: VORTEX 200
A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation
The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10–80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant (P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant (P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic
- …