3,141 research outputs found

    Breakfast:how important is it really?

    Get PDF

    Non-nutritive sweeteners and body weight management: another brick in the wall of evidence

    Get PDF
    In this issue, Harrold et al. [1] report outcomes at 52-weeks of their randomised controlled trial (RCT), called SWITCH, which compared consumption of beverages sweetened with non-nutritive sweeteners (NNS), with consumption of water. The authors deserve to be congratulated on performing a well-powered, long-term RCT with significant relevance to public health – in part they did this under restrictions necessitated by the COVID-19 pandemic. Participants in the trial were women and men with overweight or obesity, enroled in a weight management programme, comprising 12 weeks active weight loss and 40 weeks weight maintenance support (with a planned follow-up after a further 52 weeks of unassisted weight maintenance, which is ongoing). Outcomes at 12 weeks were published earlier this year [2]. There was weight loss of 6.3% at 12 weeks, which was maintained at 52 weeks (7.5%) (complete cases datasets). At 52 weeks, the weight loss was statistically significantly greater for the participants randomised to NNS beverages versus those randomised to water (7.5 kg versus 6.1 kg). So, as well as achieving and maintaining successful weight loss, this new RCT provides evidence of a small advantage for weight management of consuming NNS beverages over water

    Food reward. What it is and how to measure it

    Get PDF
    We investigated the contribution of hunger and food liking to food reward, and the relationship between food reward and food intake. We defined liking as the pleasantness of taste of food in the mouth, and food reward as the momentary value of a food to the individual at the time of ingestion. Liking and food reward were measured, respectively, by ratings of the pleasantness of the taste of a mouthful, and ratings of desire to eat a portion, of the food in question. Hunger, which we view as primarily the absence of fullness, was rated without food being present. Study 1 provided evidence that hunger and liking contribute independently to food reward, with little effect of hunger on liking. Food intake reduced liking and reward value more for the eaten food than uneaten foods. The results were ambiguous as to whether this food-specific decline in reward value (‘sensory-specific satiety’) involved a decrease in ‘wanting’ in addition to the decrease in liking. Studies 2 and 3 compared desire to eat ratings with work-for-food and pay-for-food measures of food reward, and found desire to eat to be equal or superior in respect of effects of hunger and liking, and superior in predicting ad libitum food intake. A further general observation was that in making ratings of food liking participants may confuse the pleasantness of the taste of food with the pleasantness of eating it. The latter, which some call ‘palatability,’ decreases more with eating because it is significantly affected by hunger/fullness. Together, our results demonstrate the validity of ratings of desire to eat a portion of a tasted food as a measure of food reward and as a predictor of food intake

    Appetite and energy balancing

    Get PDF
    AbstractThe idea that food intake is motivated by (or in anticipation of) ‘hunger’ arising from energy depletion is apparent in both public and scientific discourse on eating behaviour. In contrast, our thesis is that eating is largely unrelated to short-term energy depletion. Energy requirements meal-to-meal are trivial compared with total body energy stores, and energy supply to the body's tissues is maintained if a meal or even several meals are missed. Complex and exquisite metabolic machinery ensures that this happens, but metabolic regulation is only loosely coupled with the control of energy intake. Instead, food intake needs to be controlled because the limited capacity of the gut means that processing a meal presents a significant physiological challenge and potentially hinders other activities. We illustrate the relationship between energy (food) intake and energy expenditure with a simple analogy in which: (1) water in a bathtub represents body energy content, (2) water in a saucepan represents food in the gut, and (3) the bathtub is filled via the saucepan. Furthermore, (4) it takes hours to process and pass the full energy (macronutrient) content of the saucepan to the bathtub, and (5) both the saucepan and bathtub resist filling, representing negative feedbacks on appetite (desire to eat). This model is consistent with the observations that appetite is reduced acutely by energy intake (a meal added to the limited capacity of the saucepan/gut), but not increased by an acute increase in energy expenditure (energy removed from the large store of energy in the bathtub/body). The existence of relatively very weak but chronic negative feedback on appetite proportional to body fatness is supported by observations on the dynamics of energy intake and weight gain in rat dietary obesity. (We use the term ‘appetite’ here because ‘hunger’ implies energy depletion.) In our model, appetite is motivated by the accessibility of food and the anticipated and experienced pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control

    Quitting the Boss? The Role of Manager Influence Tactics and Employee Emotional Engagement in Voluntary Turnover

    Get PDF
    Employees commonly cite their managers’ behavior as the primary reason for quitting their jobs. We sought to extend turnover research by investigating whether two commonly used influence tactics by managers affect their employees’ voluntary turnover and whether employees’ emotional engagement and job satisfaction mediate this relationship. We tested our hypotheses using survey data collected at two time points from a sample of financial services directors and objective lagged turnover data. Using multilevel path modeling, we found that managers’ use of pressure and inspirational appeals had opposite effects on employee voluntary turnover and that employees’ emotional engagement was a significant and unique mediating mechanism even when job satisfaction, the traditional attitudinal predictor of turnover, was also included in the path model. Our findings contribute to turnover research by demonstrating a relationship between specific managerial behaviors and employee turnover and shed light on a key mediating mechanism that explains these effects

    Cross-over studies underestimate energy compensation:The example of sucrose-versus sucralose-containing drinks

    Get PDF
    AbstractThe vast majority of preload-test-meal studies that have investigated the effects on energy intake of disguised nutrient or other food/drink ingredient manipulations have used a cross-over design. We argue that this design may underestimate the effect of the manipulation due to carry-over effects. To test this we conducted comparable cross-over (n = 69) and parallel-groups (n = 48) studies testing the effects of sucrose versus low-calorie sweetener (sucralose) in a drink preload on test-meal energy intake. The parallel-groups study included a baseline day in which only the test meal was consumed. Energy intake in that meal was used to control for individual differences in energy intake in the analysis of the effects of sucrose versus sucralose on energy intake on the test day. Consistent with our prediction, the effect of consuming sucrose on subsequent energy intake was greater when measured in the parallel-groups study than in the cross-over study (respectively 64% versus 36% compensation for the 162 kcal difference in energy content of the sucrose and sucralose drinks). We also included a water comparison group in the parallel-groups study (n = 24) and found that test-meal energy intake did not differ significantly between the water and sucralose conditions. Together, these results confirm that consumption of sucrose in a drink reduces subsequent energy intake, but by less than the energy content of the drink, whilst drink sweetness does not increase food energy intake. Crucially, though, the studies demonstrate that study design affects estimated energy compensation
    • …
    corecore