75 research outputs found
Singlet levels of the NV centre in diamond
The characteristic transition of the NV- centre at 637 nm is between
and triplet states. There are also
intermediate and singlet states, and the
infrared transition at 1042 nm between these singlets is studied here using
uniaxial stress. The stress shift and splitting parameters are determined, and
the physical interaction giving rise to the parameters is considered within the
accepted electronic model of the centre. It is established that this
interaction for the infrared transition is due to a modification of
electron-electron Coulomb repulsion interaction. This is in contrast to the
visible 637 nm transition where shifts and splittings arise from modification
to the one-electron Coulomb interaction. It is also established that a dynamic
Jahn-Teller interaction is associated with the singlet state,
which gives rise to a vibronic level 115 above the
electronic state. Arguments associated with this level are
used to provide experimental confirmation that the is the
upper singlet level and is the lower singlet level.Comment: 19 pages, 6 figure
Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond
The optical transition linewidth and emission polarization of single
nitrogen-vacancy (NV) centers are measured from 5 K to room temperature.
Inter-excited state population relaxation is shown to broaden the zero-phonon
line and both the relaxation and linewidth are found to follow a T^5 dependence
for T up to 100 K. This dependence indicates that the dynamic Jahn-Teller
effect is the dominant dephasing mechanism for the NV optical transitions at
low temperatures
UTILISING TECHNOLOGIES FOR POST-COVID MULTIMODAL COURSE ENGAGEMENT: AN INITIAL STUDY
In 2020, new undergraduate courses were developed, each with three 4-week modules. In particular, Modern Physics II was developed for a combined roster consisting of both Newcastle and James Cook University students and comprising Special Relativity, Nuclear and Particle Physics modules. To enable maximum engagement, a flipped classroom regime with no lecture notes, blended and remote laboratories and the inclusion of the SLACK project management hub was employed.
Students were tasked with creating their own digital lecture notes from online videos resulting in 100% active engagement with the lecture content. All lecturettes contained embedded questions and a comparison of lightboard and PowerPoint was conducted. Weekly, online tutorial workshops using Zoom culminated with over 85% attendance rate consistently throughout the course. A weekly blackboard quiz was performed at a random time during these workshops and based on the embedded lecturette questions.
New innovative STEM laboratory workshops were constructed in a variety of active engagement, from purely online worksheets, blended and remote experiments which were developed to work seamlessly under the changing COVID-19 restrictions. Students were exposed to planning, management and python control coding under the visage of “embracing technology and best practice to deliver the greatest possible student experience”
Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths
Nanodiamonds (NDs) hosting optically active defects are an important
technical material for applications in quantum sensing, biological imaging, and
quantum optics. The negatively charged silicon vacancy (SiV) defect is known to
fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend
on the quality of the surrounding host lattice. This defect is therefore a good
probe to investigate the material properties of small NDs. Here we report
unprecedented narrow optical transitions for SiV colour centers hosted in
nanodiamonds produced using a novel high-pressure high-temperature (HPHT)
technique. The SiV zero-phonon lines were measured to have an inhomogeneous
distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual
spectral lines as narrow as 354 MHz were measured for SiV centres in
nanodiamonds smaller than 200 nm, which is four times narrower than the best
SiV line previously reported for nanodiamonds. Correcting for apparent spectral
diffusion yielded a homogeneous linewith of about 200 MHz, which is close to
the width limit imposed by the radiative lifetime. These results demonstrate
that the direct HPHT synthesis technique is capable of producing nanodiamonds
with high crystal lattice quality, which are therefore a valuable technical
material
Discovery of ST1 centers in natural diamond
The ST1 center is a point defect in diamond with bright fluorescence and a
mechanism for optical spin initialization and readout. The center has
impressive potential for applications in diamond quantum computing as a quantum
bus to a register of nuclear spins. This is because it has an exceptionally
high readout contrast and, unlike the well-known nitrogen-vacancy center, it
does not have a ground state electronic spin that decoheres the nuclear spins.
However, its chemical structure is unknown and there are large gaps in our
understanding of its properties. We present the discovery of ST1 centers in
natural diamond. Our experiments identify interesting power dependence of the
center's optical dynamics and reveal new electronic structure. We also present
a theory of its electron-phonon interactions, which we combine with previous
experiments, to shortlist likely candidates for its chemical structure
Qudi: a modular python suite for experiment control and data processing
Qudi is a general, modular, multi-operating system suite written in Python 3
for controlling laboratory experiments. It provides a structured environment by
separating functionality into hardware abstraction, experiment logic and user
interface layers. The core feature set comprises a graphical user interface,
live data visualization, distributed execution over networks, rapid prototyping
via Jupyter notebooks, configuration management, and data recording. Currently,
the included modules are focused on confocal microscopy, quantum optics and
quantum information experiments, but an expansion into other fields is possible
and encouraged. Qudi is available from https://github.com/Ulm-IQO/qudi and is
freely useable under the GNU General Public Licence.Comment: Software paper, 9 pages, 2 figure
- …