

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Qudi: a modular python suite for experiment control and data processing

Binder, Jan M.; Stark, Alexander; Tomek, Nikolas; Scheuer, Jochen; Frank, Florian; Jahnke, Kay D.;
Müller, Christoph; Schmitt, Simon; Metsch, Mathias H.; Unden, Thomas; Gehring, Tobias; Huck,
Alexander; Andersen, Ulrik Lund; Rogers, Lachlan J.; Jelezko, Fedor
Published in:
SoftwareX

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Binder, J. M., Stark, A., Tomek, N., Scheuer, J., Frank, F., Jahnke, K. D., ... Jelezko, F. (2017). Qudi: a modular
python suite for experiment control and data processing. SoftwareX, 6, 85-90.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84004869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/qudi-a-modular-python-suite-for-experiment-control-and-data-processing(cd610244-19ed-4680-a6c8-8b8448ea1ea6).html

SoftwareX 6 (2017) 85–90

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Qudi: A modular python suite for experiment control and data
processing
Jan M. Binder a, Alexander Stark a,b, Nikolas Tomek a, Jochen Scheuer a, Florian Frank a,
Kay D. Jahnke a, Christoph Müller a, Simon Schmitt a, Mathias H. Metsch a,
Thomas Unden a, Tobias Gehring b, Alexander Huck b, Ulrik L. Andersen b,
Lachlan J. Rogers a,∗, Fedor Jelezko a,c

a Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
b Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby 2800, Denmark
c Center for Integrated Quantum Science and Technology (IQst), Ulm University, 89081, Germany

a r t i c l e i n f o

Article history:
Received 25 November 2016
Received in revised form
30 January 2017
Accepted 2 February 2017

Keywords:
Python 3
Qt
Experiment control
Automation
Measurement software
Framework
Modular

a b s t r a c t

Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory
experiments. It provides a structured environment by separating functionality into hardware abstraction,
experiment logic and user interface layers. The core feature set comprises a graphical user interface,
live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks,
configuration management, and data recording. Currently, the included modules are focused on confocal
microscopy, quantum optics and quantum information experiments, but an expansion into other fields is
possible and encouraged.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata
Current code version 0.6
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00092
Legal Code License GNU General Public License v3
Code versioning system used git
Software code languages, tools, and services used Python3
Compilation requirements, operating environments & dependencies Environment: Anaconda, Python 3.4+, Python packages: comtypes (Windows only),

cycler, fysom, gitpython, influxdb, IPython, jedi, jupyter-client, lmfit, lxml, manhole,
matplotlib, numpy, PyDAQmx, pycallgraph, pyqtgraph, PyQt4, qtconsole, qtpy,
RPi.GPIO (Raspberry Pi only), rpyc, ruamel.yaml, scipy, spidev (Linux only),
statsmodels, traitlets, visa, pywin32 (Windows only), zmq

If available Link to developer documentation/manual https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
Support email for questions qudi@uni-ulm.de

∗ Corresponding author.
E-mail address: lachlan.j.rogers@quantum.diamonds (L.J. Rogers).

http://dx.doi.org/10.1016/j.softx.2017.02.001
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.02.001
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.02.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00092
https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
mailto:qudi@uni-ulm.de
mailto:lachlan.j.rogers@quantum.diamonds
http://dx.doi.org/10.1016/j.softx.2017.02.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

86 J.M. Binder et al. / SoftwareX 6 (2017) 85–90

Software metadata
Current software version 0.6
Permanent link to executables of this version https://github.com/Ulm-IQO/qudi/releases/tag/v0.6
Legal Software License GNU General Public License v3
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies Environment: Anaconda, Python 3.4+, Python packages: comtypes (Windows only), cycler, fysom,

gitpython, influxdb, IPython, jedi, jupyter-client, lmfit, lxml, manhole, matplotlib, numpy, PyDAQmx,
pycallgraph, pyqtgraph, PyQt4, qtconsole, qtpy, RPi.GPIO (Raspberry Pi only), rpyc, ruamel.yaml,
scipy, spidev (Linux only), statsmodels, traitlets, visa, pywin32 (Windows only), zmq

If available, link to user manual — if formally published
include a reference to the publication in the reference list

https://ulm-iqo.github.io/qudi-generated-docs/html-docs/

Support email for questions qudi@uni-ulm.de

1. Motivation and significance

Modern scientific experiments typically rely on multiple hard-
ware devices working together in a coordinated fashion. In many
instances, the hardware devices are commercial products with
programming interfaces for direct control via custom software. The
unique combination of such devices is then specific to a given ex-
periment. Efficient control of such experiments requires software
that is capable of coordinating the operation ofmultiple devices. In
addition, data interpretation is facilitated by rapid data processing
and visualization.

These challenges are exemplified when studying color cen-
ters in diamond as solid state quantum emitters for sensing, spin
manipulation and quantum information technologies. It is typi-
cal for such experiments to be performed on a ‘‘home-built con-
focal microscope’’ [1–5]. As evidenced by the 2014 Nobel Prize in
Chemistry, these techniques have expanded beyond the context of
physics and now this kind of microscope is pushing advances in bi-
ology [6–8] and nanotechnology [9,10]. A wide range of hardware
is used for such experiments, but there is a paucity of mature and
flexible lab control software to operate the apparatus.

Here, we present Qudi, a Python software suite for controlling
complex experiments and managing the acquisition and process-
ing ofmeasurement data. Despite being developed in the context of
quantum optics laboratories, the core Qudi framework is broadly
applicable to many scenarios involving coordinated operation of
multiple experiment devices. The free and open-source nature of
Qudi makes it possible for anyone to use and modify the software
to fit their research needs, and the modular code design simplifies
this task. Qudi continues to be actively developed, but it is already
mature enough for reliable laboratory use [11].

2. Software description

2.1. Why Python?

Python was chosen as the programming language for Qudi be-
cause of its conceptual synergy with the goals of the project. As a
dynamic, strongly typed, scripting language, Python has become
a popular choice for scientific programming [12,13] as the impor-
tance of scientific software increases [14]. Python’s high level of
abstraction makes it human-readable and concise, providing a di-
rect advantage for laboratory programming typically performed
by scientists rather than dedicated software developers. Source
code availability under an open-source license, the built-in mod-
ular structure of Python and good community support lower the
initial hurdle to learn the language. Additionally, most laboratory
hardware has at least an application programming interface (API)
specified for the C programming language, which can be accessed
by Python.

Scripting languages cannot replace established compiled pro-
gramming languages for tasks where processing performance or
memory efficiency is required but they are very useful to glue
together different components in order to benefit from the ad-
vantages each of them can offer [15]. This is closely aligned with
the concept of Qudi ‘‘gluing’’ together various devices and control
methods for specific complex experiments.

2.2. Qudi design

TheQudi suite consists of a collection ofmodules that are loaded
and connected together by amanager component according to set-
tings given in a configuration file as shown in Fig. 1(a). The program
startup code and manager were initially derived from similar ele-
ments contained within the neurophysiology software ACQ4 [16].
Startup is initiated by a single executable python file, and theman-
ager component provides core functions for logging, error han-
dling, configuration reading, and remote access. Additionally, the
manager also administers the other modules by providing func-
tionality for module loading, module dependency resolution and
connection, concurrent execution and network access to modules
running on other computers. This core infrastructure makes it eas-
ier to rapidly develop modules for new experiments by providing
structure and starting points.

A typical Qudi session will proceed as follows. On startup, the
supervisor process, for example an IDE, creates a Qudi process. In
this Qudi process, themanager component reads the configuration
file, sets up the log file and loads the modules designated in the
startup section of the configuration file. Typically, the startup sec-
tion will – but does not have to – contain at least the Manager GUI
and the tray icon module. Laboratory operation and experiment
control are performed by science modules, which are specified in
the configuration file along with any hardware-specific parame-
ters. Science modules can be loaded for the desired measurement
from the Manager GUI or a Jupyter notebook. Some of the science
modules in Qudi were inspired by the pi3diamond software [3–5,
17–19].

The science modules are divided into three categories: hard-
ware interaction, experiment ‘‘logic’’, and user interface. These
categories and the relationships between them are illustrated in
Fig. 1(b). The division into hardware, logic, and interface represents
a clear separation of tasks that improves reliability and flexibility
of the Qudi code. It also simplifies the implementation of new ex-
perimentmodules. The fundamental three-fold distinction is at the
basis of Qudi’s adaptability, andmakes Qudi an experiment control
software in contrast to a general software framework.

2.2.1. Logic modules
Logic modules control and synchronize a given experiment.

They pass input parameters from the user interface to the
respective hardware modules, and process measurement data in
the desired way. These modules control the information exchange

https://github.com/Ulm-IQO/qudi/releases/tag/v0.6
https://ulm-iqo.github.io/qudi-generated-docs/html-docs/
mailto:qudi@uni-ulm.de

J.M. Binder et al. / SoftwareX 6 (2017) 85–90 87

Fig. 1. Qudi functional and structural design. (a) A user launches Qudi by running the start.py file, which loads the core components that take care of configuration parsing,
module management, error logging, and remote network access. The module manager reads a configuration file to determine how a set of experiment modules should
be configured for the specific laboratory apparatus. Hence, the experiment can be carried out. (b) There is a strongly-enforced three-layer design for all Qudi experiment
modules. Specific measurements are written as logic modules, including the required tasks and data analysis. These logic modules connect down to hardware modules via
well-defined interfaces, meaning that the experiment itself is hardware agnostic as long as the hardware can fulfill the minimum requirements. GUI modules connect to
the logic and provide a way for a user to operate the experiment, as well as a means to display data and calculated results. The careful separation of the GUI from the logic
means that it is equally easy to operate experiments in a ‘‘headless’’ scripted manner.

between different hardware modules and perform all necessary
computations and conversions.

Logic modules are the only type of modules that are allowed
to interact with each other. They are also the only type of module
that has its own thread and event loop. Therefore they are the place
where concurrent execution of tasks and synchronization of differ-
ent devices is handled. All steps from the start of ameasurement to
its end, including data evaluation and storage are performed by the
logic. This goes as far as producing ‘‘publication ready’’ plots of data
that are saved togetherwith the rawdata andwhich provide a good
overview or can be sent to collaborators without post-processing.

2.2.2. Hardware abstraction via interfaces
Today it is possible and even necessary to control most ex-

periment hardware remotely. Unfortunately, the command struc-
ture, grammar, measurement units and connection methods
differ widely between device models or devices from different
suppliers of experiment hardware. To get the most re-usability
out of logic modules, it must be possible to interchange hardware
modules for measurement devices that provide similar function-
ality, but work and communicate differently. It is the task of the
hardware modules to overcome these problems by translating the
commands given by the logic into the ‘‘language’’ of the specific
hardware.

The problem is solved by defining an interface, a set of
functions that a hardwaremodule of a given typemust implement,
in order to make a certain measurement work. This set of
functions is defined in a class (named ...Interface in a file in
the interface folder) where the default implementation of each
function raises an exception, if it is not replaced in the device-
specific implementation. This class is then inherited by the actual
implementing hardware module and all inherited functions must
be overwritten.

Hardware modules can represent virtual dummy or mock
hardware, which emulates the functionality of a device. Those
dummies could load recorded measurement files, create arbitrary
data or may perform real physical simulations of measurements,
where the result is prepared according to the interface commands
which the logic can access. One of the most significant uses of
dummy hardware modules is to test the experiment logic without
being connected to any actual hardware.

2.2.3. Advanced abstraction via ‘‘interfuses’’
Building on the abstraction of interfaces, Qudi introduces an

additional concept to facilitate the reuse of modules. This ability
is provided by interfuse modules which interconnect (or fuse)
different hardware or logic modules to modify their interface
behavior or to achieve a task for which these modules were not
originally designed.

An interfuse is a logic module that implements a hardware in-
terface. In doing so, it pretends to be hardware that can connect to
an experiment logicmodule. This allows the core experiment func-
tions to remain in the logic module, while altering the kind of data
that is measured. A tangible example helps clarify this concept. A
confocal image (2D array) can represent single fluorescence values
from a photon counter for each position (x, y). An interfuse makes
it possible to replace the counter data with spectrometermeasure-
ments at each pixel, allowing fluorescence to be imaged with arbi-
trary spectral filtering. This practice improves maintainability and
prevents code duplication.

The other reason to use interfuses is where a desired feature
would require altering an existing interface definition. For
example, an interfuse can perform the coordinate transform to
correct for a tilted sample in a confocal scan. As a result, the tilted
surface appears flat in the confocal image and can then be imaged
at a consistent depth.

2.2.4. GUI
Qudi GUImodules create windows on the screen that a user can

interact with, allowing experiment control and data visualization.
Their purpose is to offer a convenient way for the user to interact
with logic modules, however Qudi is fully functional without the
GUI modules. The logic can also be controlled by the integrated
IPython console or from a Jupyter notebook. For this reason,
GUI modules are not allowed to interact with each other or the
hardware directly and they do no data processing.

The Qudi graphical user interface (GUI) is built with Qt [20],
offering users a familiar appearance. Qt is suitable due to its
multi-platform GUI toolkit that provides good Python bind-
ings [21,22] and makes it possible to separate the GUI design
from the implemented functionality. Also, Qt’s multi-thread abil-
ity ensures good scalability and parallel processing, which are
essential requirements for complex experiments. Furthermore, Qt
implements a signal-slot mechanism [23] that is very useful for

88 J.M. Binder et al. / SoftwareX 6 (2017) 85–90

Table 1
Overview of science modules included in the Qudi suite.

Name Purpose

Confocal (GUI + logic) Confocal microscope interface for imaging and positioning scanner.
Optimizer (logic) Automatically center image scanner on a local signal maximum.
odmr (GUI + logic) Microwave resonance experiments.
Pulsed (GUI + logic) Pulse sequence measurements (pulsed laser and/or microwave).
Poimanager (GUI + logic) Point-of-interest manager for keeping track of multiple measurement spots.
Magnet (GUI + logic) Driving physical magnet on motorized stages to vary applied magnetic field.
Fit (logic) Obtain fits for data in various common models (Gaussian, Lorenzian, sinusoidal, etc.).
Counter (GUI + logic) Perform and display counting tasks of binary events either in continuous or gated way.
Wavemeter_logger (GUI + logic) Record and process data as a function of laser wavelength as measured by a wavemeter.
Spectrometer (GUI + logic) Record and display spectrometer data.

concurrency, modular design, and interaction between GUI mod-
ules and logic modules. On top of this, the Python library PyQt-
Graph [24] makes it easy to create interactive, frequently updated
2- and 3-dimensional plots.

The user interface can be edited graphically in Qt Designer and
is stored as an XML file. For rapid prototyping, this file can be
(re)loaded by a running Python program. The GUI design strives to
adhere to the KDE Human Interface Guidelines [25], as these stress
the importance of interface familiarity and theyworkwell with the
default set of Qt user interface elements.

2.2.5. Interactive scripting
Interactive scripting provides a powerful additional user-

interface for a flexible software suite. Qudi contains a built-in
console with a fully integrated IPython interpreter. In addition,
Qudi can be controlled from a Jupyter Notebook. This makes it
possible to write a scripted document with incremental execution
aswell as inline visualization and analysis. Both the console and the
Jupyter notebook can control all of the internal states of the Qudi
software. These features enable rapid experiment prototyping,
since a developer can test different approaches before committing
to changes in hardware or logic modules.

3. Impact and reuse potential

TheQudi suite is useful for any small tomedium-size computer-
controlled laboratory experiment. Its modular design combined
with the use of interface definitions makes it easy to integrate new
hardware into an existing experiment. Moreover, this design offers
the capability to easily reuse existingmodules in new experiments.
The Qudi core infrastructure is broadly applicable, even beyond the
context of confocal microscopy or physics experiments in general.

Qudi is of more tangible impact to the quantum optics
community in particular. The existing modules already offer
control over confocal microscopes, electromagnets, motorized
stages, lasers, (arbitrary) signal generators, and other devices used
in this field of research. Table 1 lists the science modules currently
included in the Qudi suite. Furthermore, typical measurement
protocols and data analysis functions are already implemented.
These existing modules make Qudi a ready-to-use Python-based
software suite for quantum optics labs, independent from the
individual hardware and measurement schemes used by different
groups.

4. Illustrative example

The measurement of optically detected magnetic resonance
(ODMR) on single color centers in diamond [26,27] requires
the coordinated operation of a scanning confocal microscope
and a microwave source. This section describes how such a
measurement is performedwith Qudi, illustrating the convenience
arising from the software design outlined in this paper. The

interested reader can perform this process using the default config
distributed with Qudi that loads dummy hardware modules to
provide representative data. This experiment makes use of the
‘‘confocal’’ and ‘‘ODMR’’ science modules.

The first step is to find a single color center inside the diamond.
The Qudi confocal GUI and logic modules are used to move a
diffraction-limited focal spot through the diamond sample in three
dimensions [28–31]. This is achieved by scanning hardware that
is controlled by the confocal logic. A photon counter records
the fluorescence measured by the confocal microscope, and this
hardware device sends the data to the confocal logic. The confocal
logic produces an image of fluorescence as a function of position,
and the GUI presents this image to the user. Fig. 2 shows the
confocal GUI with an x–y image on the left and an x–z image on
the right.

In order to focus on a single center, the user places the confocal
cursor near a promising spot. An optimizer module performs a
series of close-range scans around the cursor, and the optimal
position of maximum fluorescence is found via a fitting module
built on the lmfit package [32]. A 2D gaussian fit is performed on
the x–y plane scan and for the third dimension a 1D gaussian fit on
the z line scan. These are shown in Fig. 2 on the lower right of the
Confocal GUI. Finally, the optimizer module moves the scanning
hardware to the optimal position focussed on the desired single
color center.

In addition to spatial alignment, a microwave resonance
condition has to be matched in order to detect the desired
change in optical signal [26,27,33–35]. The ODMR logic module
controls the frequency of a microwave source while recording the
fluorescence level. The design of Qudimeans that theODMR logic is
easily capable of driving a variety of microwave source hardware,
increasing flexibility in the laboratory.

AnODMRexperiment is performed by sweeping themicrowave
frequency and recording the fluorescence. Recorded data are
shown live on screen in the ODMR GUI as both the fluorescence
sum of all frequency sweeps and as a matrix plot containing each
sweep (Fig. 2, lower right). ODMR scans of several spots can be
measured automatically by saving the color center positions and
then using a script to move from spot to spot, optimizing the
position on each site and recording an ODMR spectrum.

5. Conclusions and future directions

Qudi is a generally applicable experiment control software
suite, with infrastructure to support modular design of experi-
ments, significantly reducing the effort involved in constructing
new experiments. Qudi already offers a developed quantum-optics
tool set capable of reliable laboratory operation, and amodern user
interface.

There is continuing effort to expand the library of available
sciencemodules. One priority for the future is to simplify the setup
of Qudi by providing a graphical configuration editor. Furthermore,
it would be convenient to make Qudi installable from the Python

J.M. Binder et al. / SoftwareX 6 (2017) 85–90 89

Fig. 2. Simplified illustration of Qudi used to perform ODMR experiments in the laboratory. The experimental setup consists of three main parts. The confocal microscope
is used to image the red fluorescence of color centers in diamond using a green excitation laser. The objective can be scanned in all three dimensions by scanner hardware.
An avalanche photodiode (APD) detects red fluorescence photons which are counted by digital data acquisition hardware. In addition, a signal generator exposes the color
centers to a microwave field which lowers the fluorescence at certain resonance frequencies (ODMR). The Confocal GUI shows the fluorescence images used to position the
optical focal spot and the ODMR GUI displays the microwave resonance spectra. This figure illustrates the experience of a user, and does not show the logic modules which
perform experimental functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Package Index. In the context of experiment operation, enhanced
automation capabilities are desired to allow a user to rearrange the
existing functionality without programming.

Acknowledgments

We would like to thank Boris Naydenov for advocating the use
of a software platform that can be used by the whole Quantum
Optics institute and for maintaining the predecessor to this
software. Furthermore, we would like to thank Ou Wang, Gerhard
Wolff, SamuelMüller andAndrea Filipovski for contributions to the
software, testing and reporting bugs.

This work was supported by the ERC (ERC-2013-SyG), EU (FP7
Grants 667192, 611143) projects (SIQS, DIADEMS, EQUAM), DFG
(FOR 1493 and SFBTR 21), BMBF (Project Q-Com), the Volkswagen
foundation, the Innovation Foundation Denmark (EXMAD project
no. 1311-00006B and Qubiz) and the Danish Research Council for
Independent Research (DIMS project no. 4181-00505B, Individual
Postdoc and Sapere Aude, 4184-00338B).

References

[1] Jelezko F, Gaebel T, Popa I, Gruber A, Wrachtrup J. Observation of coherent
oscillations in a single electron spin. Phys Rev Lett 2004;92(7):076401.
http://dx.doi.org/10.1103/PhysRevLett.92.076401.

[2] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R,
Mizuochi N, et al. Ultralong spin coherence time in isotopically engineered
diamond. Nature Mater 2009;8:383–7. http://dx.doi.org/10.1038/nmat2420.

[3] Fedder H, Dolde F, Rempp F, Wolf T, Hemmer P, Jelezko F, et al. Towards
T1-limited magnetic resonance imaging using Rabi beats. Appl Phys B 2011;
102(3):497–502. http://dx.doi.org/10.1007/s00340-011-4408-4,
URL http://link.springer.com/article/10.1007/s00340-011-4408-4.

[4] Waldherr G, Beck J, Steiner M, Neumann P, Gali A, Frauenheim T, et al. Dark
states of single nitrogen-vacancy centers in diamond unraveled by single shot
NMR. Phys Rev Lett 2011;106(15):157601.
http://dx.doi.org/10.1103/PhysRevLett.106.157601,
URL http://link.aps.org/doi/10.1103/PhysRevLett.106.157601.

[5] Dolde F, Bergholm V, Wang Y, Jakobi I, Naydenov B, Pezzagna S, et al. High-
fidelity spin entanglement using optimal control. Nature Commun 2014;5:
3371. http://dx.doi.org/10.1038/ncomms4371, URL
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/
ncomms4371.html.

[6] Röcker C, PötzlM, Zhang F, ParakWJ, NienhausGU. A quantitative fluorescence
study of protein monolayer formation on colloidal nanoparticles. Nature
Nanotechnol 2009;4(9):577–80. http://dx.doi.org/10.1038/nnano.2009.195,
URL http://www.nature.com/nnano/journal/v4/n9/full/nnano.2009.195.html.

[7] Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F,
et al. Diffraction-unlimited all-optical imaging and writing with a pho-
tochromic GFP. Nature 2011;478(7368):204–8.
http://dx.doi.org/10.1038/nature10497, URL
http://www.nature.com/nature/journal/v478/n7368/full/nature10497.html.

[8] Göttfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, et al.
Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at
20 nm resolution. Biophys J 2013;105(1):L01–3.
http://dx.doi.org/10.1016/j.bpj.2013.05.029,
URL http://www.sciencedirect.com/science/article/pii/S0006349513006127.

[9] Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW. Resolution scaling
in STED microscopy. Opt Expres 2008;16(6):4154–62.
http://dx.doi.org/10.1364/OE.16.004154,
URL http://www.osapublishing.org/abstract.cfm?uri=oe-16-6-4154.

[10] Hell SW, Schmidt R, Egner A. Diffraction-unlimited three-dimensional optical
nanoscopy with opposing lenses. Nature Photonics 2009;3(7):381–7.
http://dx.doi.org/10.1038/nphoton.2009.112, URL
http://www.nature.com/nphoton/journal/v3/n7/full/nphoton.2009.112.html.

[11] Jantzen U, Kurz AB, Rudnicki DS, Schäfermeier C, Jahnke KD, Andersen UL.
et al. Nanodiamonds carrying quantum emitters with almost lifetime-limited
linewidths, arXiv:1602.03391 [cond-mat, physics:physics, physics:quant-ph]
URL http://arxiv.org/abs/1602.03391.

[12] Perkel JM. Programming: Pick up Python. Nature 2015;518(7537):125–6.
http://dx.doi.org/10.1038/518125a,
URL http://www.nature.com/doifinder/10.1038/518125a.

[13] Cass S. The 2015 Top Ten Programming Languages (Jul. 2015) URL
http://spectrum.ieee.org/computing/software/the-2015-top-ten-
programming-languages.

[14] Singh Chawla D. The unsung heroes of scientific software. Nature 2016;
529(7584):115–6. http://dx.doi.org/10.1038/529115a,
URL http://www.nature.com/doifinder/10.1038/529115a.

[15] Ousterhout JK. Scripting: higher level programming for the 21st century.
Computer 1998;31(3):23–30. http://dx.doi.org/10.1109/2.660187.

[16] Campagnola L, Kratz MB, Manis PB. ACQ4: an open-source software
platform for data acquisition and analysis in neurophysiology research. Front
Neuroinform 2014;8(3): http://dx.doi.org/10.3389/fninf.2014.00003,
URL http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/
abstract.

http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1007/s00340-011-4408-4
http://link.springer.com/article/10.1007/s00340-011-4408-4
http://dx.doi.org/10.1103/PhysRevLett.106.157601
http://link.aps.org/doi/10.1103/PhysRevLett.106.157601
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://www.nature.com/ncomms/2014/140228/ncomms4371/full/ncomms4371.html
http://dx.doi.org/10.1038/nnano.2009.195
http://www.nature.com/nnano/journal/v4/n9/full/nnano.2009.195.html
http://dx.doi.org/10.1038/nature10497
http://www.nature.com/nature/journal/v478/n7368/full/nature10497.html
http://dx.doi.org/10.1016/j.bpj.2013.05.029
http://www.sciencedirect.com/science/article/pii/S0006349513006127
http://dx.doi.org/10.1364/OE.16.004154
http://www.osapublishing.org/abstract.cfm?uri=oe-16-6-4154
http://dx.doi.org/10.1038/nphoton.2009.112
http://www.nature.com/nphoton/journal/v3/n7/full/nphoton.2009.112.html
http://arxiv.org/1602.03391
http://arxiv.org/abs/1602.03391
http://dx.doi.org/10.1038/518125a
http://www.nature.com/doifinder/10.1038/518125a
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://dx.doi.org/10.1038/529115a
http://www.nature.com/doifinder/10.1038/529115a
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://dx.doi.org/10.3389/fninf.2014.00003
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00003/abstract

90 J.M. Binder et al. / SoftwareX 6 (2017) 85–90

[17] pi3diamond source code, URL https://github.com/HelmutFedder/pi3diamond.
[18] Dolde F, Fedder H, Doherty MW, Nöbauer T, Rempp F, Balasubramanian G,

et al. Electric-field sensing using single diamond spins. Nature Phys 2011;7(6):
459–63. http://dx.doi.org/10.1038/nphys1969,
URL http://www.nature.com/nphys/journal/v7/n6/abs/nphys1969.html.

[19] Michl J, Teraji T, Zaiser S, Jakobi I, Waldherr G, Dolde F, et al. Perfect alignment
and preferential orientation of nitrogen-vacancy centers during chemical
vapor deposition diamond growth on (111) surfaces. Appl Phys Lett 2014;
104(10):102407. http://dx.doi.org/10.1063/1.4868128, URL
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128.

[20] Qt—Cross-platform application development for desktop & embedded,
https://www.qt.io/. [Accessed 7 August 2016].

[21] Riverbank—Software—PyQt—What is PyQt?
https://riverbankcomputing.com/software/pyqt/intro. [Accessed 7 August
2016].

[22] PySide, https://wiki.qt.io/PySide.
[23] Signals & Slots in Qt 5, URL http://doc.qt.io/qt-5/signalsandslots.html.
[24] PyQtGraph—Scientific Graphics and GUI Library for Python,

http://www.pyqtgraph.org/. [Accessed 7 August 2016].
[25] KDE Human Interface Guidelines, https://community.kde.org/index.php?

title=KDE_Visual_Design_Group/HIG&oldid=72475. [Accessed 11 October
2016].

[26] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski Cv.
Scanning confocal optical microscopy and magnetic resonance on Single
Defect Centers. Science 1997;276(5321):2012–4. 00662,
http://dx.doi.org/10.1126/science.276.5321.2012,
URL http://www.sciencemag.org/content/276/5321/2012.

[27] Jelezko F,Wrachtrup J. Read-out of single spins by optical spectroscopy. J Phys:
Condens Matter 2004;16(30):R1089. 00084,
http://dx.doi.org/10.1088/0953-8984/16/30/R03,
URL http://iopscience.iop.org/0953-8984/16/30/R03.

[28] Pawley J, Masters BR. Handbook of biological confocal microscopy. Opt Eng
1996;35(9):2765–6.

[29] Beveratos A, Brouri R, Gacoin T, Poizat J-P, Grangier P. Nonclassical radiation
from diamond nanocrystals. Phys Rev A 2001;64(6):061802.

[30] Sipahigil A, Jahnke KD, Rogers LJ, Teraji T, Isoya J, Zibrov AS, Jelezko F,
Lukin MD. Indistinguishable photons from separated silicon-vacancy centers
in diamond. Phys Rev Lett 2014;113(11):113602.

[31] Häussler AJ, Heller P, McGuinness LP, Naydenov B, Jelezko F. Optical depth
localization of nitrogen-vacancy centers in diamondwith nanometer accuracy.
Opt Exp 2014;22(24):29986. http://dx.doi.org/10.1364/OE.22.029986, URL
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-24-29986.

[32] Newville M, Nelson A, Ingargiola A, Stensitzki T, Allan D, Micha. et al. lmfit-py
0.9.5 (Jul. 2016). http://dx.doi.org/10.5281/zenodo.58759.

[33] Nizovtsev A, Kilin SY, Neumann P, Jelezko F, Wrachtrup J. Quantum registers
based on single NV+ n 13C centers in diamond: II. Spin characteristics of
registers and spectra of optically detected magnetic resonance. Opt Spectrosc
2010;108(2):239–46.

[34] London P, Scheuer J, Cai J-M, Schwarz I, Retzker A, Plenio MB, et al. Detecting
and polarizing nuclear spins with double resonance on a single electron spin.
Phys Rev Lett 2013;111(6):067601. 00011,
http://dx.doi.org/10.1103/PhysRevLett.111.067601,
URL http://link.aps.org/doi/10.1103/PhysRevLett.111.067601.

[35] Dolde F, Jakobi I, Naydenov B, Zhao N, Pezzagna S, Trautmann C, et al. Room-
temperature entanglement between single defect spins in diamond. Nature
Phys 2013;9(3):139–43.

https://github.com/HelmutFedder/pi3diamond
http://dx.doi.org/10.1038/nphys1969
http://www.nature.com/nphys/journal/v7/n6/abs/nphys1969.html
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://dx.doi.org/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
http://scitation.aip.org/content/aip/journal/apl/104/10/10.1063/1.4868128
https://www.qt.io/
https://riverbankcomputing.com/software/pyqt/intro
https://wiki.qt.io/PySide
http://doc.qt.io/qt-5/signalsandslots.html
http://www.pyqtgraph.org/
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
https://community.kde.org/index.php?title=KDE_Visual_Design_Group/HIG&oldid=72475
http://dx.doi.org/10.1126/science.276.5321.2012
http://www.sciencemag.org/content/276/5321/2012
http://dx.doi.org/10.1088/0953-8984/16/30/R03
http://iopscience.iop.org/0953-8984/16/30/R03
http://refhub.elsevier.com/S2352-7110(17)30005-5/sbref28
http://refhub.elsevier.com/S2352-7110(17)30005-5/sbref29
http://refhub.elsevier.com/S2352-7110(17)30005-5/sbref30
http://dx.doi.org/10.1364/OE.22.029986
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-24-29986
http://dx.doi.org/10.5281/zenodo.58759
http://refhub.elsevier.com/S2352-7110(17)30005-5/sbref33
http://dx.doi.org/10.1103/PhysRevLett.111.067601
http://link.aps.org/doi/10.1103/PhysRevLett.111.067601
http://refhub.elsevier.com/S2352-7110(17)30005-5/sbref35

	Qudi: A modular python suite for experiment control and data processing
	Motivation and significance
	Software description
	Why Python?
	Qudi design
	Logic modules
	Hardware abstraction via interfaces
	Advanced abstraction via ``interfuses''
	GUI
	Interactive scripting

	Impact and reuse potential
	Illustrative example
	Conclusions and future directions
	Acknowledgments
	References

