261 research outputs found

    Effects of codesign on consumer acceptance of a wearable technology using the Lilypad Arduino, The

    Get PDF
    2019 Fall.Includes bibliographical references.Wearable technology is increasing in popularity, but research shows that significant challenges still exist in user acceptance. Meanwhile, new tools and design and development contexts are becoming accessible to the average consumer, through which they may more actively engage in the creation of products. This experimental study utilized a mixed-method approach to examine the effect of a codesign context on user acceptance of a wearable technology using the open-source wearable microcontroller, the Lilypad Arduino. Data were collected via two codesign sessions held for 17 adult participants in a western region of the United States; each session comprised a hands-on codesign activity, focus group discussion, and pre- and post-assessment surveys. Direct content analysis was conducted based on the extended Technology Acceptance Model (perceived ease of use, perceived usefulness, and perceived playfulness) as a theoretical framework upon which qualitative data from focus group discussions were arranged; paired-samples comparison analyses were conducted for survey data. Results from both the quantitative and qualitative data revealed that the codesign activity prompted a positive increase in all variables tested; implications are discussed as well as recommendations for further study

    An analysis of automatic teller machine usage by older adults : a structured interview approach.

    Get PDF
    It is often assumed that automatic teller machines (ATMs) are inherently easy to use and require no training. However, there is evidence to suggest that ATM users do experience difficulty when learning to use the system. The purpose of the present study was to conduct an in-depth analysis of ATM usage by older adults. Our approach consisted of telephone interviews followed by structured individual interviews. The goals were to understand the problems encountered by ATM users, to determine how ATMs might be better designed and to assess the training needs of older individuals. The phone interview data provide information about the relationships between age, sex and ATM usage within the adult sample, as well as information about why some people choose not to use ATMs. The structured interview data provide a more in-depth view of the concerns of both users and non-users, and information about training needs. The training and design implications of the results are discussed

    A survey of automatic teller machine usage across the adult lifespan.

    Get PDF
    The purpose of this study was to analyze automatic teller machine (ATM) usage across the adult life span. We conducted an extensive survey of 9000 people in the Memphis and Atlanta metropolitan areas. Approximately 17% of those people responded. The survey assessed detailed demographic information, experience with technology in general, experience specifically related to ATMs, problems and dislikes with ATMs, and reasons that people do not use ATMs. The survey provided a valuable set of data. First, we have detailed information about the demographics and individual characteristics of ATM users and nonusers; importantly, these data are stratified across the adult life span. In addition, we know the likes and dislikes of ATM users and the types of problems they typically have using ATMs. Moreover, we have a detailed analysis of why adults of all ages may choose not to use ATMs. Training and design implications of these data are discussed

    Fate of internal waves on a shallow shelf

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015377, doi:10.1029/2019JC015377.Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics.We are grateful for the support of the Dongsha Atoll Research Station (DARS) and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank A. Hall, S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs) funded by the National Science Foundation (EAR awards 1440596 and 1440506), G. Lohmann from WHOI, A. Safaie from UC Irvine, G. Wong, L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support, as well as E. Pawlak, S. Lentz, B. Sanders, and S. Grant for equipment, and B. Raubenheimer, S. Elgar, R. Walter and D. Lucas for informative discussions that improved this work. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for this work supported by Academia Sinica and for K.D. and E.R. from NSF‐OCE 1753317 and for O.F., J.R., and R.A. from ONR Grant 1182789‐1‐TDZZM. A portion of this work (R.A.) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344.2020-10-2

    High frequency temperature variability reduces the risk of coral bleaching

    Get PDF
    Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures

    Variables influencing the neural correlates of perceived risk of physical harm

    Get PDF
    Abstract Many human activities involve a risk of physical harm. However, not much is known about the specific brain regions involved in decision making regarding these risks. To explore the neural correlates of risk perception for physical harms, 19 participants took part in an event-related fMRI study while rating risky activities. The scenarios varied in level of potential harm (e.g., paralysis vs. stubbed toe), likelihood of injury (e.g., 1 chance in 100 vs. 1 chance in 1,000), and format (frequency vs. probability). Networks of brain regions were responsive to different aspects of risk information. Cortical language-processing areas, the middle temporal gyrus, and a region around the bed nucleus of stria terminalis responded more strongly to high-harm conditions. Prefrontal areas, along with subcortical ventral striatum, responded preferentially to highlikelihood conditions. Participants rated identical risks to be greater when information was presented in frequency format rather than probability format. These findings indicate that risk assessments for physical harm engage a broad network of brain regions that are sensitive to the severity of harm, the likelihood of risk, and the framing of risk information

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    High-content siRNA screening of the kinome identifies kinases involved in Alzheimer's disease-related tau hyperphosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurofibrillary tangles (NFT), a cardinal neuropathological feature of Alzheimer's disease (AD) that is highly correlated with synaptic loss and dementia severity, appear to be partly attributable to increased phosphorylation of the microtubule stabilizing protein tau at certain AD-related residues. Identifying the kinases involved in the pathologic phosphorylation of tau may provide targets at which to aim new AD-modifying treatments.</p> <p>Results</p> <p>We report results from a screen of 572 kinases in the human genome for effects on tau hyperphosphorylation using a loss of function, high-throughput RNAi approach. We confirm effects of three kinases from this screen, the eukaryotic translation initiation factor 2 α kinase 2 (EIF2AK2), the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and the A-kinase anchor protein 13 (AKAP13) on tau phosphorylation at the 12E8 epitope (serine 262/serine 356). We provide evidence that EIF2AK2 effects may result from effects on tau protein expression, whereas DYRK1A and AKAP13 are likely more specifically involved in tau phosphorylation pathways.</p> <p>Conclusions</p> <p>These findings identify novel kinases that phosphorylate tau protein and provide a valuable reference data set describing the kinases involved in phosphorylating tau at an AD-relevant epitope.</p

    Early Behavioral Intervention Is Associated With Normalized Brain Activity in Young Children With Autism

    Get PDF
    A previously published randomized clinical trial indicated that a developmental behavioral intervention, the Early Start Denver Model (ESDM), resulted in gains in IQ, language, and adaptive behavior of children with autism spectrum disorder. This report describes a secondary outcome measurement from this trial, EEG activity
    corecore