913 research outputs found

    Exchange Frequencies in the 2d Wigner crystal

    Full text link
    Using Path Integral Monte Carlo we have calculated exchange frequencies as electrons undergo ring exchanges in a ``clean'' 2d Wigner crystal as a function of density. The results show agreement with WKB calculations at very low density, but show a more rapid increase with density near melting. Remarkably, the exchange Hamiltonian closely resembles the measured exchanges in 2d He. Using the resulting multi-spin exchange model we find the spin Hamiltonian for r_s \leq 175 \pm 10 is a frustrated antiferromagnetic; its likely ground state is a spin liquid. For lower density the ground state will be ferromagnetic

    A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel

    Get PDF
    Point and small cluster defects in magnesium aluminate spinel have been studied from a first principles viewpoint. Typical point defects that occur during collision cascade simulations are cation anti-site defects, which have a small formation energy and are very stable, O and Mg split interstitials and vacancies. Isolated Al interstitials were found to be energetically unfavourable but could occur as part of a split Mg-Al pair or as a three atom-three vacancy Al ‘ring’ defect, previously observed in collision cascades using empirical potentials. The structure and energetics of the defects were investigated using density functional theory (DFT) and the results compared to simulations using empirical fixed-charge potentials. Each point defect was studied in a variety of supercell sizes in order to ensure convergence. It was found that empirical potential simulations significantly overestimate formation energies, but that the type and relative stability of the defects are well-predicted by the empirical potentials both for point defects and small defect clusters

    Molecular dynamics modelling of radiation damage in normal, partly inverse and inverse spinels

    Get PDF
    The radiation response of perfect crystals of MgAl2O4, partially inverted MgGa2O4 and fully inverse MgIn2O4 were investigated using molecular dynamics. Dynamical cascades were initiated in these spinels over a range of trajectories with energies of 400 eV and 2 keV for the primary knock-on event. Collision cascades were set up on each of the cation and anion sublattices and were monitored up to 10 ps. Simulations in the normal MgAl2O4 spinel for the 2 keV energy regime resulted in similar defect structures as obtained at the post-threshold 400 eV energies, with little clustering occurring. The predominant defect configurations were split interstitials and cation antisites. For the inverse spinels, a much wider variety of lattice imperfections was observed. More defects were also produced due to the formation of interstitialvacancy cation chains and oxygen crowdions

    Prototype finline-coupled TES bolometers for CLOVER

    Full text link
    CLOVER is an experiment which aims to detect the signature of gravitational waves from inflation by measuring the B-mode polarization of the cosmic microwave background. CLOVER consists of three telescopes operating at 97, 150, and 220 GHz. The 97-GHz telescope has 160 feedhorns in its focal plane while the 150 and 220-GHz telescopes have 256 horns each. The horns are arranged in a hexagonal array and feed a polarimeter which uses finline-coupled TES bolometers as detectors. To detect the two polarizations the 97-GHz telescope has 320 detectors while the 150 and 220-GHz telescopes have 512 detectors each. To achieve the target NEPs (1.5, 2.5, and 4.5x10^-17 W/rtHz) the detectors are cooled to 100 mK for the 97 and 150-GHz polarimeters and 230 mK for the 220-GHz polarimeter. Each detector is fabricated as a single chip to ensure a 100% operational focal plane. The detectors are contained in linear modules made of copper which form split-block waveguides. The detector modules contain 16 or 20 detectors each for compatibility with the hexagonal arrays of horns in the telescopes' focal planes. Each detector module contains a time-division SQUID multiplexer to read out the detectors. Further amplification of the multiplexed signals is provided by SQUID series arrays. The first prototype detectors for CLOVER operate with a bath temperature of 230 mK and are used to validate the detector design as well as the polarimeter technology. We describe the design of the CLOVER detectors, detector blocks, and readout, and present preliminary measurements of the prototype detectors performance.Comment: 4 pages, 6 figures; to appear in the Proceedings of the 17th International Symposium on Space Terahertz Technology, held 10-12 May 2006 in Pari

    Input DNA Ratio Determines Copy Number of The 33 kb Factor IX Gene on De Novo Human Artificial Chromosomes

    Get PDF
    Human artificial chromosomes (ACs) are non-integrating vectors that may be useful for gene therapy. They assemble in cultured cells following transfection of human centromeric α -satellite DNA and segregate efficiently alongside the host genome. In the present study, a 33 kilobase (kb) Factor IX (FIX) gene was incorporated into mitotically stable ACs in human HT1080 lung derived cells using co-transfection of a bacterial artificial chromosome (BAC) harboring synthetic α -satellite DNA and a P1 artificial chromosome(PAC) that spans the FIX locus. ACs were detected in ≥90% of chromosome spreads in 8 of 19 lines expanded from drug resistant colonies. FIX transgene copy number on ACs was determined by input DNA transfection ratios. Furthermore, a low level of FIX transcription was detected from ACs with multiple transgenes but not from those incorporating a single transgene, suggesting that reducing transgene number may limit misexpression. Their potential to segregate cross species was measured by transferring ACs into mouse and hamster cell lines using microcell-mediated chromosome transfer. Lines were obtained where ACs segregated efficiently. The stable segregation of ACs in rodent cells suggests that it should be possible to develop animal models to test the capacity of ACs to rescue FIX deficiency

    A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas.

    Get PDF
    Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s

    Selective inhibition of pancreatic ductal adenocarcinoma cell growth by the mitotic MPS1 kinase inhibitor NMS-P715

    Get PDF
    Most solid tumors, including pancreatic ductal adenocarcinoma (PDAC), exhibit structural and numerical chromosome instability (CIN). Although often implicated as a driver of tumor progression and drug resistance, CIN also reduces cell fitness and poses a vulnerability that can be exploited therapeutically. The spindle assembly checkpoint (SAC) ensures correct chromosome-microtubule attachment, thereby minimizing chromosome segregation errors. Many tumors exhibit upregulation of SAC components such as MPS1, which may help contain CIN within survivable limits. Prior studies showed that MPS1 inhibition with the small molecule NMS-P715 limits tumor growth in xenograft models. In cancer cell lines, NMS-P715 causes cell death associated with impaired SAC function and increased chromosome missegregation. Although normal cells appeared more resistant, effects on stem cells, which are the dose-limiting toxicity of most chemotherapeutics, were not examined. Elevated expression of 70 genes (CIN70), including MPS1, provides a surrogate measure of CIN and predicts poor patient survival in multiple tumor types. Our new findings show that the degree of CIN70 upregulation varies considerably among PDAC tumors, with higher CIN70 gene expression predictive of poor outcome. We identified a 25 gene subset (PDAC CIN25) whose overexpression was most strongly correlated with poor survival and included MPS1. In vitro, growth of human and murine PDAC cells is inhibited by NMS-P715 treatment, whereas adipose-derived human mesenchymal stem cells are relatively resistant and maintain chromosome stability upon exposure to NMS-P715. These studies suggest that NMS-P715 could have a favorable therapeutic index and warrant further investigation of MPS1 inhibition as a new PDAC treatment strategy

    Variational quantum Monte Carlo study of two-dimensional Wigner crystals: exchange, correlation, and magnetic field effects

    Full text link
    The two-dimensional Wigner crystals are studied with the variational quantum Monte Carlo method. The close relationship between the ground-state wavefunction and the collective excitations in the system is illustrated, and used to guide the construction of the ground-state wavefunction of the strongly correlated solid. Exchange, correlation, and magnetic field effects all give rise to distinct physical phenomena. In the absence of any external magnetic field, interesting spin-orderings are observed in the ground-state of the electron crystal in various two-dimensional lattices. In particular, two-dimensional bipartite lattices are shown not to lead necessarily to an antiferromagnetic ground-state. In the quantum Hall effect regime, a strong magnetic field introduces new energy and length scales. The magnetic field quenches the kinetic energy and poses constraints on how the electrons may correlate with each other. Care is taken to ensure the appropriate translational properties of the wavefunction when the system is in a uniform magnetic field. We have examined the exchange, intra-Landau-level correlation as well as Landau-level-mixing effects with various variational wavefunctions. We also determine their dependences on the experimental parameters such as the carrier effective mass at a modulation-doped semiconductor heterojunction. Our results, when combined with some recent calculations for the energy of the fractional quantum Hall liquid including Landau-level-mixing, show quantitatively that in going from nn-doping to pp-doping in GaAS/AlGaASGaAS/AlGaAS heterojunction systems, the crossover filling factor from the fractional quantum Hall liquid to the Wigner crystal changes from filling factor ν∼1/5\nu \sim 1/5 to ν∼1/3\nu \sim 1/3. This lends strong support to the claim that theComment: LaTex file, 14 figures available from [email protected]
    • …
    corecore