21 research outputs found

    Protein arginine methyltransferases interact with intraflagellar transport particles and change location during flagellar growth and resorption

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 28 (2017): 1208-1222, doi:10.1091/mbc.E16-11-0774.Changes in protein by posttranslational modifications comprise an important mechanism for the control of many cellular processes. Several flagellar proteins are methylated on arginine residues during flagellar resorption; however, the function is not understood. To learn more about the role of protein methylation during flagellar dynamics, we focused on protein arginine methyltransferases (PRMTs) 1, 3, 5, and 10. These PRMTs localize to the tip of flagella and in a punctate pattern along the length, very similar, but not identical, to that of intraflagellar transport (IFT) components. In addition, we found that PRMT 1 and 3 are also highly enriched at the base of the flagella, and the basal localization of these PRMTs changes during flagellar regeneration and resorption. Proteins with methyl arginine residues are also enriched at the tip and base of flagella, and their localization also changes during flagellar assembly and disassembly. PRMTs are lost from the flagella of fla10-1 cells, which carry a temperature-sensitive mutation in the anterograde motor for IFT. The data define the distribution of specific PRMTs and their target proteins in flagella and demonstrate that PRMTs are cargo for translocation within flagella by the process of IFT.This work was supported by National Science Foundation Award MCB 0950402 (R.D.S.), the Ira Allen Eastman (Class of 1829) Professorship at Dartmouth (R.D.S.), which was established in 1910 through a gift to the College by his widow, Jane Eastman, and by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science (K.M.)

    The Chlamydomonas flagellar membrane glycoprotein FMG-1B is necessary for expression of force at the flagellar surface

    Get PDF
    Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Cell Science 132 (2019): jcs.233429, doi:10.1242/jcs.233429.In addition to bend propagation for swimming, Chlamydomonas cells use their flagella to glide along a surface. When polystyrene microspheres are added to cells, they attach to and move along the flagellar surface, thus serving as a proxy for gliding that can be used to assay for the flagellar components required for gliding motility. Gliding and microsphere movement are dependent on intraflagellar transport (IFT). Circumstantial evidence suggests that mechanical coupling of the IFT force-transducing machinery to a substrate is mediated by the flagellar transmembrane glycoprotein FMG-1B. Here, we show that cells carrying an insertion in the 5′-UTR of the FMG-1B gene lack FMG-1B protein, yet assemble normal-length flagella despite the loss of the major protein component of the flagellar membrane. Transmission electron microscopy shows a complete loss of the glycocalyx normally observed on the flagellar surface, suggesting it is composed of the ectodomains of FMG-1B molecules. Microsphere movements and gliding motility are also greatly reduced in the 5′-UTR mutant. Together, these data provide the first rigorous demonstration that FMG-1B is necessary for the normal expression of force at the flagellar surface in Chlamydomonas. This article has an associated First Person interview with authors from the paper.This work was made possible by a Dartmouth FRPDF (faculty research and professional development fund) generously provided by the Dean of the Faculty and by the Ira Allen Eastman (Class of 1829) Professorship, which was established in 1910 by a gift to the College from his widow, Jane Eastman.2020-08-0

    A 62-kD protein required for mitotic progression is associated with the mitotic apparatus during M-phase and with the nucleus during interphase

    Get PDF
    A protein of 62 kD is a substrate of a calcium/calmodulin-dependent protein kinase, and both proteins copurify with isolated mitotic apparatuses (Dinsmore, J. H., and R. D. Sloboda. 1988. Cell. 53:769- 780). Phosphorylation of the 62-kD protein increases after fertilization; maximum incorporation of phosphate occurs during late metaphase and anaphase and correlates directly with microtubule disassembly as determined by in vitro experiments with isolated mitotic apparatuses. Because 62-kD protein phosphorylation occurs in a pattern similar to the accumulation of the mitotic cyclin proteins, experiments were performed to determine the relationship between cyclin and the 62- kD protein. Continuous labeling of marine embryos with [35S]methionine, as well as immunoblots of marine embryo proteins using specific antibodies, were used to identify both cyclin and the 62-kD protein. These results clearly demonstrate that the 62-kD protein is distinct from cyclin and, unlike cyclin, is a constant member of the cellular protein pool during the first two cell cycles in sea urchin and surf clam embryos. Similar results were obtained using immunofluorescence microscopy of intact eggs and embryos. In addition, immunogold electron microscopy reveals that the 62-kD protein associates with the microtubules of the mitotic apparatus in dividing cells. Interestingly, the protein changes its subcellular distribution with respect to microtubules during the cell cycle. Specifically, during mitosis the 62- kD protein associates with the mitotic apparatus; before nuclear envelope breakdown, however, the 62-kD protein is confined to the nucleus. After anaphase, the 62-kD protein returns to the nucleus, where it resides until nuclear envelope disassembly of the next cell cycle

    Acoustic Intensity Causes Perceived Changes in Arousal Levels in Music: An Experimental Investigation

    Get PDF
    Listener perceptions of changes in the arousal expressed by classical music have been found to correlate with changes in sound intensity/loudness over time. This study manipulated the intensity profiles of different pieces of music in order to test the causal nature of this relationship. Listeners (N = 38) continuously rated their perceptions of the arousal expressed by each piece. An extract from Dvorak's Slavonic Dance Opus 46 No 1 was used to create a variant in which the direction of change in intensity was inverted, while other features were retained. Even though it was only intensity that was inverted, perceived arousal was also inverted. The original intensity profile was also superimposed on three new pieces of music. The time variation in the perceived arousal of all pieces was similar to their intensity profile. Time series analyses revealed that intensity variation was a major influence on the arousal perception in all pieces, in spite of their stylistic diversity

    A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption

    Get PDF
    Author Posting. © American Society for Cell Biology, 2008. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 19 (2008): 4319-4327, doi:10.1091/mbc.E08-05-0470.During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a punctate pattern reminiscent of IFT particle staining, and immunoblot analysis reveals that the amount of MetE in flagella is low in full-length flagella, increased in regenerating flagella, and highest in resorbing flagella. Four methylated proteins have been identified in resorbing flagella, using antibodies specific for asymmetrically dimethylated arginine residues. These proteins are found almost exclusively in the axonemal fraction, and the methylated forms of these proteins are essentially absent in full-length and regenerating flagella. Because most cells resorb cilia/flagella before cell division, these data indicate a link between flagellar protein methylation and progression through the cell cycle.This work was supported by National Institutes of Health Grant DK071720 (R.D.S.) and National Science Foundation Grant MCB 0418877 (R.D.S.)
    corecore