26 research outputs found
Feature Selection Library (MATLAB Toolbox)
Feature Selection Library (FSLib) is a widely applicable MATLAB library for
Feature Selection (FS). FS is an essential component of machine learning and
data mining which has been studied for many years under many different
conditions and in diverse scenarios. These algorithms aim at ranking and
selecting a subset of relevant features according to their degrees of
relevance, preference, or importance as defined in a specific application.
Because feature selection can reduce the amount of features used for training
classification models, it alleviates the effect of the curse of dimensionality,
speeds up the learning process, improves model's performance, and enhances data
understanding. This short report provides an overview of the feature selection
algorithms included in the FSLib MATLAB toolbox among filter, embedded, and
wrappers methods.Comment: Feature Selection Library (FSLib) 201
Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality
In an era where accumulating data is easy and storing it inexpensive, feature
selection plays a central role in helping to reduce the high-dimensionality of
huge amounts of otherwise meaningless data. In this paper, we propose a
graph-based method for feature selection that ranks features by identifying the
most important ones into arbitrary set of cues. Mapping the problem on an
affinity graph-where features are the nodes-the solution is given by assessing
the importance of nodes through some indicators of centrality, in particular,
the Eigen-vector Centrality (EC). The gist of EC is to estimate the importance
of a feature as a function of the importance of its neighbors. Ranking central
nodes individuates candidate features, which turn out to be effective from a
classification point of view, as proved by a thoroughly experimental section.
Our approach has been tested on 7 diverse datasets from recent literature
(e.g., biological data and object recognition, among others), and compared
against filter, embedded and wrappers methods. The results are remarkable in
terms of accuracy, stability and low execution time.Comment: Preprint version - Lecture Notes in Computer Science - Springer 201
Online Feature Selection for Visual Tracking
Object tracking is one of the most important tasks in many applications of computer vision. Many tracking methods use a fixed set of features ignoring that appearance of a target object may change drastically due to intrinsic and extrinsic factors. The ability to dynamically identify discriminative features would help in handling the appearance variability by improving tracking performance. The contribution of this work is threefold. Firstly, this paper presents a collection of several modern feature selection approaches selected among filter, embedded, and wrapper methods. Secondly, we provide extensive tests regarding the classification task intended to explore the strengths and weaknesses of the proposed methods with the goal to identify the right candidates for online tracking. Finally, we show how feature selection mechanisms can be successfully employed for ranking the features used by a tracking system, maintaining high frame rates. In particular, feature selection mounted on the Adaptive Color Tracking (ACT) system operates at over 110 FPS. This work demonstrates the importance of feature selection in online and realtime applications, resulted in what is clearly a very impressive performance, our solutions improve by 3% up to 7% the baseline ACT while providing superior results compared to 29 state-of-the-art tracking methods
Personality in Computational Advertising: A Benchmark
In the last decade, new ways of shopping online have increased the
possibility of buying products and services more easily and faster
than ever. In this new context, personality is a key determinant
in the decision making of the consumer when shopping. A person’s
buying choices are influenced by psychological factors like
impulsiveness; indeed some consumers may be more susceptible
to making impulse purchases than others. Since affective metadata
are more closely related to the user’s experience than generic
parameters, accurate predictions reveal important aspects of user’s
attitudes, social life, including attitude of others and social identity.
This work proposes a highly innovative research that uses a personality
perspective to determine the unique associations among the
consumer’s buying tendency and advert recommendations. In fact,
the lack of a publicly available benchmark for computational advertising
do not allow both the exploration of this intriguing research
direction and the evaluation of recent algorithms. We present the
ADS Dataset, a publicly available benchmark consisting of 300 real
advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) rated
by 120 unacquainted individuals, enriched with Big-Five users’
personality factors and 1,200 personal users’ pictures
Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications
The last decade has seen a revolution in the theory and application of
machine learning and pattern recognition. Through these advancements, variable
ranking has emerged as an active and growing research area and it is now
beginning to be applied to many new problems. The rationale behind this fact is
that many pattern recognition problems are by nature ranking problems. The main
objective of a ranking algorithm is to sort objects according to some criteria,
so that, the most relevant items will appear early in the produced result list.
Ranking methods can be analyzed from two different methodological perspectives:
ranking to learn and learning to rank. The former aims at studying methods and
techniques to sort objects for improving the accuracy of a machine learning
model. Enhancing a model performance can be challenging at times. For example,
in pattern classification tasks, different data representations can complicate
and hide the different explanatory factors of variation behind the data. In
particular, hand-crafted features contain many cues that are either redundant
or irrelevant, which turn out to reduce the overall accuracy of the classifier.
In such a case feature selection is used, that, by producing ranked lists of
features, helps to filter out the unwanted information. Moreover, in real-time
systems (e.g., visual trackers) ranking approaches are used as optimization
procedures which improve the robustness of the system that deals with the high
variability of the image streams that change over time. The other way around,
learning to rank is necessary in the construction of ranking models for
information retrieval, biometric authentication, re-identification, and
recommender systems. In this context, the ranking model's purpose is to sort
objects according to their degrees of relevance, importance, or preference as
defined in the specific application.Comment: European PhD Thesis. arXiv admin note: text overlap with
arXiv:1601.06615, arXiv:1505.06821, arXiv:1704.02665 by other author
Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications
The last decade has seen a revolution in the theory and application of
machine learning and pattern recognition. Through these advancements, variable
ranking has emerged as an active and growing research area and it is now
beginning to be applied to many new problems. The rationale behind this fact is
that many pattern recognition problems are by nature ranking problems. The main
objective of a ranking algorithm is to sort objects according to some criteria,
so that, the most relevant items will appear early in the produced result list.
Ranking methods can be analyzed from two different methodological perspectives:
ranking to learn and learning to rank. The former aims at studying methods and
techniques to sort objects for improving the accuracy of a machine learning
model. Enhancing a model performance can be challenging at times. For example,
in pattern classification tasks, different data representations can complicate
and hide the different explanatory factors of variation behind the data. In
particular, hand-crafted features contain many cues that are either redundant
or irrelevant, which turn out to reduce the overall accuracy of the classifier.
In such a case feature selection is used, that, by producing ranked lists of
features, helps to filter out the unwanted information. Moreover, in real-time
systems (e.g., visual trackers) ranking approaches are used as optimization
procedures which improve the robustness of the system that deals with the high
variability of the image streams that change over time. The other way around,
learning to rank is necessary in the construction of ranking models for
information retrieval, biometric authentication, re-identification, and
recommender systems. In this context, the ranking model's purpose is to sort
objects according to their degrees of relevance, importance, or preference as
defined in the specific application.Comment: European PhD Thesis. arXiv admin note: text overlap with
arXiv:1601.06615, arXiv:1505.06821, arXiv:1704.02665 by other author
Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach
Feature selection is playing an increasingly significant role with respect to
many computer vision applications spanning from object recognition to visual
object tracking. However, most of the recent solutions in feature selection are
not robust across different and heterogeneous set of data. In this paper, we
address this issue proposing a robust probabilistic latent graph-based feature
selection algorithm that performs the ranking step while considering all the
possible subsets of features, as paths on a graph, bypassing the combinatorial
problem analytically. An appealing characteristic of the approach is that it
aims to discover an abstraction behind low-level sensory data, that is,
relevancy. Relevancy is modelled as a latent variable in a PLSA-inspired
generative process that allows the investigation of the importance of a feature
when injected into an arbitrary set of cues. The proposed method has been
tested on ten diverse benchmarks, and compared against eleven state of the art
feature selection methods. Results show that the proposed approach attains the
highest performance levels across many different scenarios and difficulties,
thereby confirming its strong robustness while setting a new state of the art
in feature selection domain.Comment: Accepted at the IEEE International Conference on Computer Vision
(ICCV), 2017, Venice. Preprint cop
Personality in Computational Advertising: A Benchmark
In the last decade, new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. A person’s buying choices are influenced by psychological factors like impulsiveness; indeed some consumers may be more susceptible to making impulse purchases than others. Since affective metadata are more closely related to the user’s experience than generic parameters, accurate predictions reveal important aspects of user’s attitudes, social life, including attitude of others and social identity. This work proposes a highly innovative research that uses a personality perspective to determine the unique associations among the consumer’s buying tendency and advert recommendations. In fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of recent algorithms. We present the ADS Dataset, a publicly available benchmark consisting of 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) rated by 120 unacquainted individuals, enriched with Big-Five users’ personality factors and 1,200 personal users’ pictures
Feature Selection via Eigenvector Centrality
In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph - where features are the nodes - the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigenvector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data, object recognition, among others), and compared against filter, embedded, and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time
Infinite feature selection: a graph-based feature filtering approach
We propose a filtering feature selection framework that considers a subset of features as a path in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse setups with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known yet effective comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process