400 research outputs found

    Regulation of organic anion transport in the liver.

    Get PDF
    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter (cmoat), has been extensively studied. The regulation of intracellular vesicular sorting of cmoat by protein kinase C and protein kinase A, and the regulation of cmoat-mediated transport in endotoxemic liver disease, have been examined. The discovery that the multidrug resistance protein (MRP), responsible for multidrug resistance in cancers, transports similar substrates as cmoat led to the cloning of a MRP homologue from rat liver, named mrp2. Mrp2 turned out to be identical to cmoat. At present there is evidence that at least two mrp's are present in hepatocytes, the original mrp (mrp1) on the lateral membrane, and mrp2 (cmoat) on the canalicular membrane. The expression of mrp1 and mrp2 in hepatocytes appears to be cell-cycle-dependent and regulated in a reciprocal fashion. These findings show that biliary transport of organic anions and possibly other canalicular transport is influenced by the entry of hepatocytes into the cell cycle. The cloning of the gene for cmoat opens up new possibilities to study the regulation of hepatic organic anion transport

    Route of Administration of the TLR9 Agonist CpG Critically Determines the Efficacy of Cancer Immunotherapy in Mice

    Get PDF
    Contains fulltext : 81648.pdf (publisher's version ) (Open Access)BACKGROUND: The TLR9 agonist CpG is increasingly applied in preclinical and clinical studies as a therapeutic modality to enhance tumor immunity. The clinical application of CpG appears, however, less successful than would be predicted from animal studies. One reason might be the different administration routes applied in most mouse studies and clinical trials. We studied whether the efficacy of CpG as an adjuvant in cancer immunotherapy is dependent on the route of CpG administration, in particular when the tumor is destructed in situ. METHODOLOGY/PRINCIPAL FINDINGS: In situ tumor destruction techniques are minimally invasive therapeutic alternatives for the treatment of (nonresectable) solid tumors. In contrast to surgical resection, tumor destruction leads to the induction of weak but tumor-specific immunity that can be enhanced by coapplication of CpG. As in situ tumor destruction by cryosurgery creates an instant local release of antigens, we applied this model to study the efficacy of CpG to enhance antitumor immunity when administrated via different routes: peritumoral, intravenous, and subcutaneous but distant from the tumor. We show that peritumoral administration is superior in the activation of dendritic cells, induction of tumor-specific CTL, and long-lasting tumor protection. Although the intravenous and subcutaneous (at distant site) exposures are commonly used in clinical trials, they only provided partial protection or even failed to enhance antitumor responses as induced by cryosurgery alone. CONCLUSIONS/SIGNIFICANCE: CpG administration greatly enhances the efficacy of in situ tumor destruction techniques, provided that CpG is administered in close proximity of the released antigens. Hence, this study helps to provide directions to fully benefit from CpG as immune stimulant in a clinical setting

    Design of the e-Vita diabetes mellitus study: effects and use of an interactive online care platform in patients with type 2 diabetes (e-VitaDM-1/ZODIAC-40)

    Get PDF
    Background Due to ongoing rise in need for care for people with chronic diseases and lagging increase in number of care providers, alternative forms of care provision and self-management support are needed. Empowering patients through an online care platform could help to improve patients’ self-management and reduce the burden on the healthcare system. Methods Access to laboratory results and educational modules on diabetes will be offered through a platform for subjects with type 2 diabetes mellitus treated in primary care. Differences in socio-demographic and clinical characteristics between subjects expressing interest vs. disinterest to use the platform will be explored. Platform usage will be tracked and compared. Patient satisfaction and quality of life will be measured by validated questionnaires and economic analyses will be performed. Discussion This study is designed to assess the feasibility of use of an online platform in routine primary healthcare for subjects with type 2 diabetes mellitus in the Netherlands, and to study effects of use of the platform on treatment satisfaction, quality of life and clinical parameters. Although providing access to a online platform is not a novel intervention, usage and effects have not yet been studied in this patient population

    Demographical, Clinical, and Psychological Characteristics of Users and Nonusers of an Online Platform for T2DM Patients (e-VitaDM-3/ZODIAC-44)

    Get PDF
    Background. Online platforms offer opportunities for support in changing lifestyle and taking responsibility for one's health, but engaging patients with type 2 diabetes is challenging. Previous studies have shown that patients interested in platforms were more often male, younger, and higher educated. This study aims to investigate differences in clinical and psychological characteristics between users and nonusers of a newly developed platform. Methods. A prospective study started in the Drenthe region of Netherlands. Participants in the study concerning quality of care and quality of life were additionally invited to use the platform. Results. 633 patients were registered after they opted for platform use. Of these patients, 361 (57.0%) never logged on, 184 (29.1%) were labeled "curious" users, and 88 (13.9%) were identified as "active" users. Users had lower HbA1c levels and more often hypertension compared to nonusers, and reported higher quality of life, better well-being, lower diabetes-related distress, and better medication adherence. Discussion. Platform use was associated with more favorable clinical and psychological characteristics relative to nonuse. Those with greater severity of disease, lower mood, and progression of disease used the platform the least. Other approaches need to be developed to reach these patients. Furthermore, improving the platform could also help to reach them. This trial is registered with Clinicaltrials.gov NCT01570140

    Rapid Response to Remdesivir in Hospitalised COVID-19 Patients:A Propensity Score Weighted Multicentre Cohort Study

    Get PDF
    Introduction: Remdesivir is a registered treatment for hospitalised patients with COVID-19 that has moderate clinical effectiveness. Anecdotally, some patients’ respiratory insufficiency seemed to recover particularly rapidly after initiation of remdesivir. In this study, we investigated if this rapid improvement was caused by remdesivir, and which patient characteristics might predict a rapid clinical improvement in response to remdesivir. Methods: This was a multicentre observational cohort study of hospitalised patients with COVID-19 who required supplemental oxygen and were treated with dexamethasone. Rapid clinical improvement in response to treatment was defined by a reduction of at least 1 L of supplemental oxygen per minute or discharge from the hospital within 72 h after admission. Inverse probability of treatment-weighted logistic regression modelling was used to assess the association between remdesivir and rapid clinical improvement. Secondary endpoints included in-hospital mortality, ICU admission rate and hospitalisation duration. Results: Of 871 patients included, 445 were treated with remdesivir. There was no influence of remdesivir on the occurrence of rapid clinical improvement (62% vs 61% OR 1.05, 95% CI 0.79–1.40; p = 0.76). The in-hospital mortality was lower (14.7% vs 19.8% OR 0.70, 95% CI 0.48–1.02; p = 0.06) for the remdesivir-treated patients. Rapid clinical improvement occurred more often in patients with low C-reactive protein (≤ 75 mg/L) and short duration of symptoms prior to hospitalisation (&lt; 7 days) (OR 2.84, 95% CI 1.07–7.56). Conclusion: Remdesivir generally does not increase the incidence of rapid clinical improvement in hospitalised patients with COVID-19, but it might have an effect in patients with short duration of symptoms and limited signs of systemic inflammation.</p

    Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation, obesity, and deregulation of total body energy homeostasis. We induced inflammation in adipose and liver tissues <it>in vitro </it>in order to mimic inflammation <it>in vivo </it>with the aim to identify tissue-specific processes implicated in IR and to find biomarkers indicative for tissue-specific IR.</p> <p>Methods</p> <p>Human adipose and liver tissues were cultured in the absence or presence of LPS and DNA Microarray Technology was applied for their transcriptome analysis. Gene Ontology (GO), gene functional analysis, and prediction of genes encoding for secretome were performed using publicly available bioinformatics tools (DAVID, STRING, SecretomeP). The transcriptome data were validated by proteomics analysis of the inflamed adipose tissue secretome.</p> <p>Results</p> <p>LPS treatment significantly affected 667 and 483 genes in adipose and liver tissues respectively. The GO analysis revealed that during inflammation adipose tissue, compared to liver tissue, had more significantly upregulated genes, GO terms, and functional clusters related to inflammation and angiogenesis. The secretome prediction led to identification of 399 and 236 genes in adipose and liver tissue respectively. The secretomes of both tissues shared 66 genes and the remaining genes were the differential candidate biomarkers indicative for inflamed adipose or liver tissue. The transcriptome data of the inflamed adipose tissue secretome showed excellent correlation with the proteomics data.</p> <p>Conclusions</p> <p>The higher number of altered proinflammatory genes, GO processes, and genes encoding for secretome during inflammation in adipose tissue compared to liver tissue, suggests that adipose tissue is the major organ contributing to the development of systemic inflammation observed in IR. The identified tissue-specific functional clusters and biomarkers might be used in a strategy for the development of tissue-targeted treatment of insulin resistance in patients.</p

    Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients

    Get PDF
    This paper reports a systematic study of the level of flavan-3-ol monomers during typical processing steps as cacao beans are dried, fermented and roasted and the results of Dutch-processing. Methods have been used that resolve the stereoisomers of epicatechin and catechin. In beans harvested from unripe and ripe cacao pods, we find only (-)-epicatechin and (+)-catechin with (-)-epicatechin being by far the predominant isomer. When beans are fermented there is a large loss of both (-)-epicatechin and (+)-catechin, but also the formation of (-)-catechin. We hypothesize that the heat of fermentation may, in part, be responsible for the formation of this enantiomer. When beans are progressively roasted at conditions described as low, medium and high roast conditions, there is a progressive loss of (-)-epicatechin and (+)-catechin and an increase in (-)-catechin with the higher roast levels. When natural and Dutch-processed cacao powders are analyzed, there is progressive loss of both (-)-epicatechin and (+)-catechin with lesser losses of (-)-catechin. We thus observe that in even lightly Dutch-processed powder, the level of (-)-catechin exceeds the level of (-)-epicatechin. The results indicate that much of the increase in the level of (-)-catechin observed during various processing steps may be the result of heat-related epimerization from (-)-epicatechin. These results are discussed with reference to the reported preferred order of absorption of (-)-epicatechin > (+)-catechin > (-)-catechin. These results are also discussed with respect to the balance that must be struck between the beneficial impact of fermentation and roasting on chocolate flavor and the healthful benefits of chocolate and cocoa powder that result in part from the flavan-3-ol monomers

    Detection of Genetically Altered Copper Levels in Drosophila Tissues by Synchrotron X-Ray Fluorescence Microscopy

    Get PDF
    Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes
    • …
    corecore