6 research outputs found

    Banff lesions and renal allograft survival in chronic-active antibody mediated rejection

    Get PDF
    Aims: Chronic-active antibody mediated rejection (c-aABMR) is a major cause of kidney graft loss. Currently, little is known about the relation between histopathologic parameters and renal allograft survival. Methods and results: Between 2008 and 2014, 41 patients with a progressive decrease in renal function were diagnosed with c-aABMR according to Banff 2015 and followed up for at least 3 years. Clinical and renal biopsy characteristics were analyzed for association with graft survival. During follow-up 26 cases lost their graft because of c-aABMR at a median follow up of 40 months after diagnosis. Cases with v-lesions in their biopsy had a significant higher loss of eGFR prior to diagnosis. The total inflammation score (r = −0.45 p =.007) and the severity of interstitial fibrosis (r = −0.38 p =.023) were related to the eGFR at time of biopsy. Univariate regression analysis showed that eGFR at time of biopsy, total inflammation, interstitial fibrosis and the sum chronicity score were significantly related to the risk for graft failure during follow-up. In a multivariate analysis only the severity of interstitial fibrosis remained associated with decreased graft survival (HR 1.9 per score point, 95% CI 1.2–2.8, p =.004). Conclusion: Severity of renal interstitial fibrosis and not inflammation predicts graft survival in cases of c-aABMR

    Apparent Lack of BRAFV600E Derived HLA Class I Presented Neoantigens Hampers Neoplastic Cell Targeting by CD8+ T Cells in Langerhans Cell Histiocytosis

    Get PDF
    Langerhans Cell Histiocytosis (LCH) is a neoplastic disorder of hematopoietic origin characterized by inflammatory lesions containing clonal histiocytes (LCH-cells) intermixed with various immune cells, including T cells. In 50-60% of LCH-patients, the somatic BRAFV600E driver mutation, which is common in many cancers, is detected in these LCH-cells in an otherwise quiet genomic landscape. Non-synonymous mutations like BRAFV600E can be a source of neoantigens capable of eliciting effective antitumor CD8+ T cell responses. This requires neopeptides to be stably presented by Human Leukocyte Antigen (HLA) class I molecules and sufficient numbers of CD8+ T cells at tumor sites. Here, we demonstrate substantial heterogeneity in CD8+ T cell density in n = 101 LCH-lesions, with BRAFV600E mutated lesions displaying significantly lower CD8+ T cell:CD1a+ LCH-cell ratios (p = 0.01) than BRAF wildtype lesions. Because LCH-lesional CD8+ T cell density had no significant impact on event-free survival, we investigated whether the intracellularly expressed BRAFV600E protein is degraded into neopeptides that are naturally processed and presented by cell surface HLA class I molecules. Epitope prediction tools revealed a single HLA class I binding BRAFV600E derived neopeptide (KIGDFGLATEK), which indeed displayed strong to intermediate binding capacity to HLA-A*03:01 and HLA-A*11:01 in an in vitro peptide-HLA binding assay. Mass spectrometry-based targeted peptidomics was used to investigate the presence of this neopeptide in HLA class I presented peptides isolated from several BRAFV600E expressing cell lines with various HLA genotypes. While the HLA-A*02:01 binding BRAF wildtype peptide KIGDFGLATV was traced in peptides isolated from a

    PIRCHE-II is related to graft failure after kidney transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor-recipient couples that were transplanted between 1995 and 2005. For these donors-recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04-1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10-1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients

    Get PDF
    Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient's HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, as determined by extensive laboratory testing. AM patients have superior long-term graft survival compared with highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants in 1995-2005, we selected deceased donor single transplants with a minimum of 1 HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of 1 HLA-B plus 1 HLA-DR, or 2 HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to nonsensitized patients, independent of other risk factors for rejection. In contrast to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low-risk transplants for highly sensitized patients with rejection rates similar to those of nonimmunized individuals

    Comparison of Alemtuzumab and Anti-thymocyte Globulin Treatment for Acute Kidney Allograft Rejection

    Get PDF
    Rabbit anti-thymocyte globulin (rATG) is currently the treatment of choice for glucocorticoid-resistant, recurrent, or severe acute allograft rejection (AR). However, rATG is associated with severe infusion-related side effects. Alemtuzumab is incidentally given to kidney transplant recipients as treatment for AR. In the current study, the outcomes of patients treated with alemtuzumab for AR were compared with that of patients treated with rATG for AR. The patient-, allograft-, and infection-free survival and adverse events of 116 alemtuzumab-treated patients were compared with those of 108 patients treated with rATG for AR. Propensity scores were used to control for differences between the two groups. Patient- and allograft survival of patients treated with either alemtuzumab or rATG were not different [hazard ratio (HR) 1.14, 95%-confidence interval (CI) 0.48–2.69, p = 0.77, and HR 0.82, 95%-CI 0.45–1.5, p = 0.52, respectively). Infection-free survival after alemtuzumab treatment was superior compared with that of rATG-treated patients (HR 0.41, 95%-CI 0.25–0.68, p < 0.002). Infusion-related adverse events occurred less frequently after alemtuzumab treatment. Alemtuzumab therapy may therefore be an alternative therapy for glucocorticoid-resistant, recurrent, or severe acute kidney transplant rejec

    Follicular T helper cells and humoral reactivity in kidney transplant patients

    No full text
    Summary: Memory B cells play a pivotal role in alloreactivity in kidney transplantation. Follicular T helper (Tfh) cells play an important role in the differentiation of B cells into immunoglobulin-producing plasmablasts [through interleukin (IL)-21]. It is unclear to what extent this T cell subset regulates humoral alloreactivity in kidney transplant patients, therefore we investigated the absolute numbers and function of peripheral Tfh cells (CD4POSCXCR5POS T cells) in patients before and after transplantation. In addition, we studied their relationship with the presence of donor-specific anti-human leucocyte antigen (HLA) antibodies (DSA), and the presence of Tfh cells in rejection biopsies. After transplantation peripheral Tfh cell numbers remained stable
    corecore