152 research outputs found

    On the estimation of attenuation from the ambient seismic field: inferences from distributions of isotropic point scatterers

    Get PDF
    Cross-correlation of ambient seismic noise recorded by two seismic stations may result in an estimate of the Green's function between those two receivers. Several authors have recently attempted to measure attenuation based on these interferometric, receiver-receiver surface waves. By now, however, it is well established that the loss of coherence of the cross-correlation as a function of space depends strongly on the excitation of the medium. In fact, in a homogeneous dissipative medium, uniform excitation is required to correctly recover attenuation. Applied to fundamental-mode ambient seismic surface waves, this implies that the cross-correlation will decay at the local attenuation rate only if noise sources are distributed uniformly on the Earth's surface. In this study we show that this constraint can be relaxed in case the observed loss of coherence is due to multiple scattering instead of dissipation of energy. We describe the scattering medium as an effective medium whose phase velocity and rate of attenuation are a function of the scatterer density and the average strength of the scatterers. We find that the decay of the cross-correlation in the effective medium coincides with the local attenuation of the effective medium in case the scattering medium is illuminated uniformly from all angles. Consequently, uniform excitation is not a necessary condition for the correct retrieval of scattering attenuation. We exemplify the implications of this finding for studies using the spectrally whitened cross-correlation to infer subsurface attenuatio

    On estimating attenuation from the amplitude of the spectrally whitened ambient seismic field

    Get PDF
    Measuring attenuation on the basis of interferometric, receiver-receiver surface waves is a non-trivial task: the amplitude, more than the phase, of ensemble-averaged cross-correlations is strongly affected by non-uniformities in the ambient wavefield. In addition, ambient noise data are typically pre-processed in ways that affect the amplitude itself. Some authors have recently attempted to measure attenuation in receiver-receiver cross-correlations obtained after the usual pre-processing of seismic ambient-noise records, including, most notably, spectral whitening. Spectral whitening replaces the cross-spectrum with a unit amplitude spectrum. It is generally assumed that cross-terms have cancelled each other prior to spectral whitening. Cross-terms are peaks in the cross-correlation due to simultaneously acting noise sources, that is, spurious traveltime delays due to constructive interference of signal coming from different sources. Cancellation of these cross-terms is a requirement for the successful retrieval of interferometric receiver-receiver signal and results from ensemble averaging. In practice, ensemble averaging is replaced by integrating over sufficiently long time or averaging over several cross-correlation windows. Contrary to the general assumption, we show in this study that cross-terms are not required to cancel each other prior to spectral whitening, but may also cancel each other after the whitening procedure. Specifically, we derive an analytic approximation for the amplitude difference associated with the reversed order of cancellation and normalization. Our approximation shows that an amplitude decrease results from the reversed order. This decrease is predominantly non-linear at small receiver-receiver distances: at distances smaller than approximately two wavelengths, whitening prior to ensemble averaging causes a significantly stronger decay of the cross-spectru

    Propagator and transfer matrices, Marchenko focusing functions and their mutual relations

    Full text link
    Many seismic imaging methods use wave field extrapolation operators to redatum sources and receivers from the surface into the subsurface. We discuss wave field extrapolation operators that account for internal multiple reflections, in particular propagator matrices, transfer matrices and Marchenko focusing functions. A propagator matrix is a square matrix that `propagates' a wave-field vector from one depth level to another. It accounts for primaries and multiples and holds for propagating and evanescent waves. A Marchenko focusing function is a wave field that focuses at a designated point in space at zero time. Marchenko focusing functions are useful for retrieving the wave field inside a heterogeneous medium from the reflection response at its surface. By expressing these focusing functions in terms of the propagator matrix, the usual approximations (such as ignoring evanescent waves) are avoided. While a propagator matrix acts on the full wave-field vector, a transfer matrix (according to the definition employed in this paper)`transfers' a decomposed wave-field vector (containing downgoing and upgoing waves) from one depth level to another. It can be expressed in terms of decomposed Marchenko focusing functions. We present propagator matrices, transfer matrices and Marchenko focusing functions in a consistent way and discuss their mutual relations. In the main text we consider the acoustic situation and in the appendices we discuss other wave phenomena. Understanding these mutual connections may lead to new developments of Marchenko theory and its applications in wave field focusing, Green's function retrieval and imaging.Comment: 42 pages, 4 figure

    The role of the background velocity model for the Marchenko focusing of reflected and refracted waves

    Full text link
    Marchenko algorithms retrieve the wavefields excited by virtual sources in the subsurface, these are the Green's functions consisting of the primary and multiple reflected waves. The requirements for these algorithms are the same as for conventional imaging algorithms; they need an estimate of the velocity model and the recorded reflected waves. We investigate the dependence of the retrieved Green's functions using the Marchenko equation on the background velocity model and address the question: ``How well do we need to know the velocity model for accurate Marchenko focusing?". We present three different background velocity models and compare the Green's functions retrieved using these models. We show that these retrieved Green's functions using the Marchenko equation give correlation coefficients with the exact Green's function larger than 90% on average except near the edges of the receiver aperture. We also examine the presence of refracted waves in the retrieved Green's function. We show with a numerical example that the Marchenko focusing algorithm produces refracted waves only if the initial velocity model used for the iterative scheme is sufficiently detailed to model the refracted waves

    Spectral element modelling of fault-plane reflections arising from fluid pressure distributions

    Get PDF
    The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective-stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We perform a complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zon

    Theory and Laboratory Experiments of Elastic Wave Scattering by Dry Planar Fractures

    Get PDF
    Remote sensing of fractures with elastic waves is important in fields ranging from seismology to nondestructive testing. In many geophysical applications, fractures control the flow of fluids such as water, hydrocarbons or magma. While previous analytic descriptions of scattering mostly deal with very large or very small fractures (compared to the dominant wavelength), we present an analytic solution for the scattering of elastic waves from a fracture of arbitrary size. Based on the linear slip model for a dry fracture, we derive the scattering amplitude in the frequency domain under the Born approximation for all combinations of incident and scattered wave modes. Our analytic results match laser-based ultrasonic laboratory measurements of a single fracture in clear plastic, allowing us to quantify the compliance of a fracture

    Seismic interferometry in the presence of an isolated noise source

    Get PDF
    Seismic interferometry gives rise to a correlation wavefield that is closely related to the Green’s function under the condition of uniformly distributed noise sources. In the presence of an additional isolated noise source, a second contribution to this wavefield is introduced that emerges from the isolated source location at negative lapse time. These two contributions interfere, which may bias surface wave dispersion measurements significantly. To avoid bias, the causal and acausal parts of correlation functions need to be treated separately. We illustrate this by applying seismic interferometry to field data from a large-N array where a wind farm is present within the arra

    Spectral element modelling of fault-plane reflections arising from fluid pressure distributions

    Get PDF
    The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective–stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We perform a complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone
    • …
    corecore