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S U M M A R Y
The presence of fault-plane reflections in seismic images, besides indicating the locations of
faults, offers a possible source of information on the properties of these poorly understood
zones. To better understand the physical mechanism giving rise to fault-plane reflections in
compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral
element method (SEM) for several different fault models. Using well log data from the South
Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic
parameters (e.g. P-wave velocity and density) and the effective–stress along both normal
compaction and unloading paths. These empirical relationships guide the numerical modelling
and allow the investigation of how differences in fluid pressure modify the elastic wavefield.
We choose to simulate the elastic wave equation via SEM since irregular model geometries
can be accommodated and slip boundary conditions at an interface, such as a fault or fracture,
are implemented naturally. The method we employ for including a slip interface retains the
desirable qualities of SEM in that it is explicit in time and, therefore, does not require the
inversion of a large matrix.

We perform a complete numerical study by forward modelling seismic shot gathers over a
faulted earth model using SEM followed by seismic processing of the simulated data. With
this procedure, we construct post-stack time-migrated images of the kind that are routinely
interpreted in the seismic exploration industry. We dip filter the seismic images to highlight
the fault-plane reflections prior to making amplitude maps along the fault plane. With these
amplitude maps, we compare the reflectivity from the different fault models to diagnose which
physical mechanism contributes most to observed fault reflectivity. To lend physical meaning
to the properties of a locally weak fault zone characterized as a slip interface, we propose
an equivalent-layer model under the assumption of weak scattering. This allows us to use the
empirical relationships between density, velocity and effective stress from the South Eugene
Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone.

Key words: fault zones, fluid pressures, spectral element method.

1 I N T RO D U C T I O N

Seismic data acquisition and processing have evolved to the point
that fault-plane reflections are often imaged under favorable con-
ditions (Liner 1999), such as above salt in the Gulf of Mexico.
Reflections originating from fault zones hold important informa-
tion about fluid movement along faults (Haney et al. 2005b) and the
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77001, USA.

capacity of a fault to act as a seal (Haney et al. 2004). Faults pose
a challenge to seismic interpreters by virtue of their dual function
as both hydrocarbon traps and pathways (Hooper 1991) for hydro-
carbons to move from deep kitchens into shallower, economically
producible reservoirs. Any light that seismic data can shed on this
situation would be useful.

To gain a stronger grasp on the factors at play in causing fault-
plane reflectivity, we have pursued a complete numerical study of
seismic wave interaction with fault models. By complete, we do
not simply model the entire measured (elastic) wavefield with high
fidelity, but additionally process the data into time-migrated images,
which is how many geoscientists in the petroleum industry gain
access to and begin examining seismic data. We model the wavefield
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with a numerical code based on the spectral element method (SEM)
that allows for discontinuous slip to occur at fault planes (Ampuero
2002). Processing of the elastic wavefield output by the SEM code
has been accomplished using Seismic Un*x (Stockwell 1997).

Previous studies that examined fault-plane reflectivity have re-
lied on simpler or less advantageous numerical methods for forward
modelling the seismic wavefield than SEM. For instance, both Jones
& Nur (1984) and Moore et al. (1995) employed simple 1-D mod-
elling techniques based on the convolutional model of the seismic
trace (Robinson 1984) to interpret fault-plane reflections in seismic
data. Townsend et al. (1998) performed 2-D finite-difference mod-
elling of the seismic wavefield reflected from layers offset by fault-
ing, but did not study the reflections from the fault plane itself. Zhu &
Snieder (2002) adapted a 2-D staggered-grid, velocity–stress finite-
difference technique to model reflections from a fault or fracture.
Bakulin et al. (2004) performed 3-D finite-difference modelling
over a horizontal fault zone consisting of a network of inclusions, or
fractures. The advantages of SEM over finite-difference techniques
has been discussed previously by Komatitsch et al. (2002).

We sketch the theory behind SEM and, after discussing the dip-
filtering step we employ to highlight the fault-plane reflections in
migrated data, we present results for several different fault models.
These models represent examples and combinations of three basic
types of heterogeneity we expect to exist at faults. These three basic
types are as follows.

(i) Juxtaposition (sand/shale or shale/sand) contacts.
(ii) Pressure contrasts (�P) across the fault.
(iii) Locally weak fault zones, that is, slip interfaces.

We expect from the outset that these various types of heterogeneity
show up differently in dip-filtered seismic images. For instance,
since the juxtaposition contacts exist over the length scale of a typical
bed thickness and have positive (sand/shale) or negative (shale/sand)
reflection coefficients, the smoothing of the dip-filter (Oppenheim
& Schafer 1975) should act to suppress this contribution to the
dip-filtered fault-plane reflectivity compared to the other two fault
models. This is desirable since the juxtaposition contacts do not
carry direct information on the sealing or conducting properties of
the fault.

The other two types of heterogeneity, pressure contrasts and slip
at the fault plane, relate to pore-pressure distributions at the fault and
are not attacked by the dip filter in the same way as are the juxtaposi-
tion contacts. Although reflections due to �P are interpreted in the
oil industry more commonly than reflections due to a locally weak
fault zone, Worthington & Hudson (2000) have recently explained
the apparent attenuation of seismic waves transmitted through a fault
in the North Sea by allowing slip planes to exist at the fault. In dis-
cussing possible causes of interfacial slip, Nihei et al. (1994) stated
that in ‘oil and gas reservoir environments and in parts of the earth’s
crust where effective stresses may be low due to the presence of
high pore-pressures, the contact between neighbouring lithologies
or across fractures may be imperfect.’ Given this, we expect that a
locally pressurized fault zone can act as a slip interface and give
rise to reflected seismic waves. Lending importance to the model
of a pressurized fault zone, there have recently been reports of field
observations of elevated pore-pressure inside fault zones (Crampin
et al. 2002; Haney et al. 2005b).

In the first section of this paper, we discuss empirical relationships
between pore-pressure and three basic rock properties—porosity,
density and sonic velocity. The data for this analysis come from
wells drilled at the South Eugene Island field, offshore Louisiana.
These relationships form the basis for the models used in the subse-

quent SEM simulations. The fact that pore-pressure largely controls
rock matrix properties in compacting sedimentary basins allows
methods for imaging seismic reflections to indirectly measure spa-
tially varying pore-pressure distributions. The variation of the three
rock properties with effective stress reveals a fundamental hysteretic
type of behaviour in the sediments. Evidence for both plastic (irre-
versible) and elastic (reversible) deformation exists in the available
well data and pressure tests. These two regimes point to different
underlying causes of overpressure (Hart et al. 1995). For these dual
deformation mechanisms, we construct two empirical relationships
between each rock property and pore-pressure—one valid for each
regime. Before we discuss these issues, though, we wish to clarify
exactly what we mean by the term effective stress in the rest of this
paper.

2 V E RT I C A L E F F E C T I V E S T R E S S

Pore-pressures that exceed the hydrostatic pressure, or overpres-
sures, lead to a lowering of density and seismic velocity and
may contribute to the reflectivity of associated with fault zones.
Pennebaker (1968) was among the first geoscientists to demonstrate
the ability of seismic stacking velocities to detect fluid pressures in
the subsurface. Terzaghi (1943), however, had previously discussed
the basic principle, that of an effective stress acting on the rock
frame. According to Terzaghi’s principle, the effective stress deter-
mines rock properties (e.g. P-wave velocity). In extensional regimes
typical of sedimentary basins, it turns out that, to a good approx-
imation, only the vertical effective stress needs to be considered
since the sediments compact by uniaxial strain (Engelder 1993).
Terzaghi’s definition of the vertical effective stress, now known as
the differential stress σ d (Hofmann et al. 2005), is the difference
between the vertical confining stress, σ v , and the pore-pressure p:

σd = σv − p. (1)

Eq. (1) states that rocks of similar composition but at different con-
fining stress and pore-pressure have the same velocity so long as
the difference between the confining stress and pore-pressure is the
same. Hence, high pore-pressure, which lowers effective stress, leads
to lower seismic velocities.

Following the work of Terzaghi, rock physicists began to question
whether the effective stress governing rock properties is simply the
difference between the confining stress and the pore-pressure (Wang
2000; Hofmann et al. 2005). Today, the most general effective–stress
law is instead

σe = σv − np, (2)

where the parameter n is called the effective stress coefficient.
Carcione & Tinivella (2001) state that the value of n can differ for
each physical quantity (e.g. permeability, compressibility, or shear
modulus), and that it depends linearly on the differential stress of
eq. (1). Currently, the effective–stress coefficient is a controversial
topic and is an active area of research within the rock physics com-
munity. For the remainder of this paper, we do not distinguish be-
tween differential stress, σ d and effective stress, σ e; that is, we take
n = 1 in eq. (2). This assumption is commonly made in the petroleum
exploration industry and is supported in arguments posed recently
by Gurevich (2004). The assumption of n = 1 is also best suited for
high porosity, poorly consolidated rocks, as are found in compacting
sedimentary basins.
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3 P O RO S I T Y V E R S U S D E P T H

Compaction acts to reduce the porosity of sediments as they are
buried; however, this process can continue only as long as fluids in
the diminishing pore space are allowed to be expelled. Such would
be the case in normally pressured, hydrostatic sediments in which
the fluids are in communication up to the seafloor. Once the move-
ment of the fluids out of the pore space is opposed, as in a compart-
ment sealed-off by low permeability or high capillary-entry-pressure
shales or fault gouge, the porosity remains constant with burial depth
if the fluid is more or less incompressible. This situation is called un-
dercompaction (Huffman 2002). Undercompaction means the sedi-
ments are ‘frozen’ in time and are simply buried in their unchanging
earlier compaction state (Bowers 1995). To compound the situa-
tion, if fluid from outside the undercompacted sediments is pumped
into the pore space, or if hydrocarbons are generated from within
the undercompacted sediments, a process called unloading occurs
(Huffman 2002). Whereas undercompaction can only cease the re-
duction of porosity (Bowers 1995), unloading can actually reverse
the trend and increase porosity. Although unloading can reverse the
trend, it cannot reclaim all of the previously lost porosity. This is
because the compaction process has a large irreversible component.
In contrast, unloading and loading of sediments by pumping fluid
into and then depressurizing the pore space is a reversible process,
insofar as the fluid does not cause hydrofracturing.

We have examined wireline data taken in wells at the South Eu-
gene Island field, offshore Louisiana, for indicators of overpressure,
such as constant porosity as a function of depth. Previous work by
Hart et al. (1995) shows the crossover from hydrostatic to over-
pressured conditions in porosities derived from sonic velocities. We
take a slightly different, perhaps more straightforward, approach
based on the density log. The South Eugene Island field is a Plio-
Pleistocene minibasin formed by salt withdrawal and has yielded
more than 300 million barrels of oil in its lifetime. An illustration
of the main subsurface features at South Eugene Island is shown in
Fig. 1. The main part of the field is a vertical stack of interbedded
sand and shale layers bounded by two large growth faults to the
north and south.

Fig. 2 shows porosity derived from density logs within the mini-
basin taken in the following wells at South Eugene Island: A13,
A20ST, A14OH, A15, A23, A6, B10, B1, B2, B7 and B8. Because
the geology in the minibasin is essentially horizontally layered, we
ignore the fact that some wells may be far away from each other
and simply look at the depth variation of their porosity. In all the
well logs shown in this paper, we have done some smoothing with
depth (over ∼100 m) to remove any short-range lithologic influ-
ences (e.g. interbedded sand and shale) on the density and velocity.
To obtain the porosity from the density log, we take the solid grains
to have a density of 2650 kg m−3 and the fluid to have a density
of 1000 kg m−3, as in Revil & Cathles (2002). In Fig. 2, there is a
clear break from the shallow, decreasing porosity trend at a depth
of 1800 m. Based on the work of Stump et al. (1998), we assume
that this is the onset of overpressures in the sedimentary section,
beneath a shale bed located above a layer called the JD-sand. We fit
an exponential trend to the porosity values above 1800 m, known as
Athy’s Law (Athy 1930), to get the normal compaction trend in the
hydrostatically pressured sediments

φc(z) = 0.47 e−0.00046 z, (3)

where in this equation, the depth z is in metres. The superscript c in
eq. (3) refers to the fact that this functional relationship characterizes
normal compaction. In the porosity-versus-depth plot of Fig. 2, this

Figure 1. Regional map of the Gulf of Mexico (top) showing the study area,
the South Eugene Island field. The four main faults at the field are shown
in the qualitative depiction of a typical depth section (bottom) as the A, B,
F and Z faults. Throw across the faults is shown by the single layer running
from left to right. Most of the wells at South Eugene Island were drilled into
the shallow, hydrostatic section within the minibasin, which is bounded by
the Z fault to the south and the A- and B-faults to the north. The A20ST well
was unusual in that it was continued through the A-fault system and into
the deeper, overpressured and upthrown block to the north of the minibasin.
There, two pressure measurements (RFTs) were made at the positions shown
by 1 and 2 in the depth section.

relationship holds for any movement towards the right on the normal
compaction curve and any purely right-going horizontal deviations
from the normal compaction curve. For purely right-going horizon-
tal deviations, the depth z used in eq. (3) is equal to the depth at which
the horizontal deviation started. The two circles in Fig. 2 represent
samples taken in the A20ST well in northern upthrown block (see
Fig. 1) and are connected to the normal compaction curve by both
horizontal and vertical dashed lines. The vertical dashed lines show
the departure of the samples from the normal compaction trend. We
return to these in the next section.

The sediments deeper than 1800 m in Fig. 2 maintain a nearly
constant porosity of around 0.2 during subsequent burial (a hori-
zontal deviation from the compaction trend). Though the depth of
the sediments increases with burial, the effective stress experienced
by the sediments does not appear to change and compaction ceases.
Hence, the additional weight of the overburden with increasing depth
is borne by the fluids trapped in the pore space. As a result, the
pore-pressure increases with the vertical gradient of the overburden
stress, in order to satisfy Terzaghi’s law eq. (1), and is said to have
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Figure 2. Porosity versus depth at South Eugene Island. The thick, solid line
is the best-fitting normal compaction trend using Athy’s Law (Athy 1930).
The faint solid lines are density-derived porosity values from 11 wells at
South Eugene Island. To obtain the porosity, we assume that the solid grains
have a density of 2650 kg m−3 and the fluid has a density of 1000 kg
m−3, as in Revil & Cathles (2002). There is a clear break from the shallow,
exponentially decreasing porosity trend at a depth of 1800 m, at which point
the porosity remains constant with increasing depth, as shown by the lowest
dashed line. The two circles are density-derived porosities from samples in
the upthrown block to the north of the minibasin at South Eugene Island (see
Fig. 1). The two dashed lines connecting the circles to the main compaction
trend are the interpreted porosity histories of the two samples. They show a
period of undercompaction, depicted as a horizontal dashed line deviating
from the normal compaction trend, followed by an unloading path, shown as
a vertical dashed line, due to a late-stage pore-pressure increase.

a lithostatic gradient. In doing so, overpressure, or pore-pressure in
excess of hydrostatic, is created below 1800 m.

4 D E N S I T Y V E R S U S V E RT I C A L
E F F E C T I V E S T R E S S

Since density is a parameter widely used in the field of seismic
wave propagation, we study the variability of the bulk density in
this section. In contrast to the preceding section, we want to see
how density changes with effective stress, not depth. To accomplish
this, we take only the measurements that are shallower than 1800 m,
where the pore pressure is, by all indications, hydrostatic. Therefore,
we know the pore pressure and can calculate the effective stress. In
overpressured compartments, since the pore-pressure is unknown,
direct measurements by Repeat Formation Tests (RFTs) are neces-
sary to calculate the effective stress.

We rewrite eq. (3) in terms of density and effective stress using
the relationships

ρ = ρs(1 − φ) + φρ f , (4)

and

σd = ρ f gz, (5)

where ρ is the bulk density and ρ s and ρ f are the densities of
the solid and fluid components. Note that the relationship for σ d

holds only under hydrostatic conditions. From these relationships
and eq. (3), we obtain the normal compaction curve for density

ρc(σd ) = ρs − 0.47 (ρs − ρ f ) e−0.0003σd , (6)

0   1000 2000 3000 4000
1800

2000

2200

2400

σ
v
 – P (psi)

de
ns

ity
 (

kg
/m

3 )

1 

1 2

2

Figure 3. Density versus effective stress at South Eugene Island. The thick
solid line is the same normal compaction trend shown in Fig. 2, except
transformed into density and effective stress. The faint solid lines are also
the same as in Fig. 2, except that they are now limited to the hydrostatic depths
down to 1800 m. The circles represent two pressure measurements, labelled
1 and 2, which were made in the overpressured upthrown block where a
density log also existed. For each pressure measurement, we plot the data
point twice—one where it should lie on the normal compaction curve were
it to have been normally pressured, and the other where it actually does plot
because of severe overpressure. Note that sample 1 is from a greater depth
than sample 2.

where ρ s and ρ f are the densities of the solid and fluid compo-
nents, taken as 2650 and 1000 kg m−3, respectively, and σ d is in
psi. We plot this normal compaction curve in Fig. 3 together with
the density measurements. Also, in Fig. 3, we show as circles two
data points obtained from RFT pressure measurements and density
log measurements in the overpressured upthrown block. We show
the circles in two locations—one on the normal compaction trend
where they would plot if the measurements were at hydrostatically
pressured locations, and the other where they actually plot because
of severe overpressures being present in the upthrown block.

At this point, we don’t know exactly how the samples taken in the
upthrown block came to be off the normal compaction trend. Using
a laboratory measurement of the unloading coefficient by Elliott
(1999) on a core sample taken near the locations of samples 1 and
2, the path that these samples took to their present locations can be
estimated. Elliott (1999) characterized the effect of unloading, or
elastic swelling on the porosity of the core samples to be

φu(σd ) = φ0 (1 − βσd ) , (7)

where φ0 and β characterize the deviation of the unloading path from
the normal compaction trend. Note the superscript u, in contrast to
eq. (3), indicating the unloading path instead of the normal com-
paction trend. Elliott (1999) found that φ0 = 0.37 and β = 0.98 ×
10−8 Pa−1 for the unloading path. Though these parameters de-
scribe the porosity, we use them to find the slope of the unloading
path for density using the relationships between porosity and den-
sity described earlier. After finding this slope, we can construct the
unloading path for the density using eq. (6)

ρu(σd ) = 0.04 (σd − σmax) + ρs

−0.47 (ρs − ρ f ) e−0.0003σmax . (8)

This expression contains an extra parameter σ max that refers to the
value of the effective stress when the sample began to be unloaded,

C© 2007 The Authors, GJI, 170, 933–951

Journal compilation C© 2007 RAS



Fluid pressure and fault reflectivity 937

or the maximum past effective stress. We do not know σ max for
samples 1 and 2, but we do know that σ max must lie on the main
compaction trend. Hence, we can construct linear unloading paths
for the density, as shown by the dashed lines in Fig. 3. With these
unloading paths, we can then find the value for the maximum past
effective stress σ max. It is worth mentioning that the maximum past
effective stress for sample 1 comes out to be ∼1500 psi by our
approach of using Elliott’s experimental results. In an independent
measurement, Stump & Flemings (2002) performed uniaxial strain
tests on a core sample taken from the same location as sample 1 to
find the maximum past effective stress. Stump & Flemings (2002)
report a value of 1248 psi for this sample, close to our estimate of
∼1500 psi; visually, the discrepancy lies within the error bars of the
normal compaction curve’s fit to the density log data.

With the estimate of the maximum past effective stress, we can
also return to Fig. 2 and find the depth at which samples 1 and 2
left the normal compaction trend, since in the hydrostatic zone the
depth is a linearly scaled version of the effective stress. These depths
correspond to a slightly lower porosity than that of samples 1 and 2.
We interpret this as being the result of a late stage porosity increase
and represent it as unloading paths, shown by vertical dashed lines,
for samples 1 and 2 in Fig. 2.

5 S O N I C V E L O C I T Y V E R S U S
V E RT I C A L E F F E C T I V E S T R E S S

For the purposes of modelling faults and to make inferences about
the distribution of pore-pressure from seismic interval velocity in-
versions, accurate pore-pressure-versus-velocity relationships are
critical (Dutta 1997). In general, sonic velocity has a normal com-
paction curve and unloading paths as a function of effective stress
that are similar to those we just described for the density well log
data. To obtain these relationships for velocity, we proceed as for
the density logs: (1) we take 12 shallow wells to make up a data
set of sonic velocity versus effective stress; (2) we select the depth
range with hydrostatic pressures and plot the sonic velocity versus
effective stress; (3) we fit this with a power-law relation for the nor-
mal compaction trend and (4) we look at where the two samples
from the overpressured upthrown block lie and construct unloading
curves using the estimate for the maximum past effective stress we
obtained in the previous section. The wells we use for characterizing
the sonic velocity come from A20ST, A14OH, A23, A6, B10, B1,
B2, B7, B8, A1, B14 and B20.

In Fig. 4, we plot the normal compaction trend for sonic velocity
as a thick solid line described by the power-law equation (Bowers
1995)

vc
p(σd ) = 1500 + 2.3 σ 0.77

d , (9)

where v p is in m s−1 and σ d is in psi. Note again the superscript c
for the normal compaction relation. We also construct the unloading
curve for v p following the relationship first suggested by Bowers
(1995)

vu
p(σd ) = 1500 + 2.3

[
σmax

(
σd

σmax

)1/6.2
]0.77

, (10)

where σ d and σ max are in psi and v p is again in m s−1.
To model elastic waves, one other parameter is needed in addition

to ρ and v p; for instance, a seismologist would naturally want the
shear velocity. In the absence of information on the shear wave
velocity v s and pressure in the shallow, hydrostatic sediments, we
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Figure 4. Sonic velocity versus effective stress at South Eugene Island.
The thick solid line represents the normal compaction curve fitted to the
shallow well data, shown in the faint solid lines. We also plot samples 1
and 2 both where they should fall on the normal compaction trend, were
they to be normally pressured, and where they actually plot due to the severe
overpressure where they were obtained. Using the estimate for past maximum
effective stress from the density plot and the Bowers-type relation (Bowers
1995) shown in eq. (10), we are able to construct the velocity unloading
curves, shown as dashed lines.

assume that

vs(σd ) = vp(σd ) − 1500, (11)

where the velocities are in m s−1 and the relationship holds on
both the normal compaction curve and unloading paths. The data
presented by Zimmer et al. (2002) for unconsolidated sands supports
this assumption, in that the dependence they found for v s on effective
stress is essentially a down-shifted version of the v p curve. An
additional piece of supporting evidence comes from the only v s data
available at South Eugene Island, a shear log from the A20ST well,
where samples 1 and 2 were taken (Anderson et al. 1994). There, the
ratio of v p/v s from the sonic and shear logs falls between 3 and 3.5
in the overpressured upthrown block. Inserting the values for v p at
samples 1 and 2 into eq. (11) to get v s and finding the corresponding
ratio of v p/v s , we get v p/v s ∼ 3.5 at sample 1 and v p/v s ∼ 3.0 at
sample 2, within the range of the ratios observed in the sonic and
shear logs.

To summarize, we have established two empirical relationships
between each of three basic rock properties and pore-pressure at
the South Eugene Island field. Most importantly for subsequent
numerical modelling of wave propagation, we have found relation-
ships for the density ρ and the sonic velocity v p on both the nor-
mal compaction and unloading paths. Without shallow informa-
tion on the shear velocity v s , we must make the assumption that
it is a down-shifted version of the v p(σ d ) relationship. From look-
ing at the density-derived porosity-versus-depth-relationship, we are
able to conclude that the deep, overpressured sediments below the
JD-sand are predominately overpressured because of undercom-
paction, since their porosity did not change appreciably with depth.
In contrast, both undercompaction and unloading have contributed
to the current overpressured state of the sediments on the upthrown
side of the minibasin. We assume that the sediments within the
minibasin bounding growth fault zones (faults A and B in Fig. 1)
are in a similar compaction state as the upthrown block since Losh
et al. (1999) have stated that these ‘fault zones are typically at the
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same pressure as the upthrown sediments.’ Our conclusion that the
upthrown sediments have undergone both undercompaction and un-
loading is in agreement with a previous study by Hart et al. (1995) on
porosity and pressure at South Eugene Island. We use the above em-
pirical relationships between the elastic parameters and fluid pres-
sure in the following sections to simulate fault-plane reflections from
different pressure distributions in the subsurface.

6 T H E S P E C T R A L E L E M E N T M E T H O D

Numerical modelling of wave propagation in the Earth can be based
on the weak (Zienkiewicz & Taylor 2000) or strong forms (Boore
1970) of the elastodynamic equations of motion. By weak and
strong, we mean the integrated or differential forms of the equa-
tions of motion. SEM is based on the weak form and naturally
handles general geometries and exotic boundary conditions. In the
finite-difference method (based on the strong form), it is notori-
ously difficult to implement a linear-slip boundary condition (Coates
& Schoenberg 1995) or any general boundary condition for that
matter (Boore 1970; Kelly et al. 1976). On the other hand, SEM
with explicit time-stepping does not require the inversion of a large
matrix, a property usually identified with finite-difference methods
and lumped-matrix finite-element methods. Formally, this property
stems from the diagonality of the mass matrix, a feature that is
consistently obtained by design of the SEM through a combination
of subintegration and the choice of coincident interpolation and
quadrature nodes. Although this design is in contrast to the classi-
cal and artificial mass-lumping in FEM, the SEM mass matrix can
also be obtained from lumping of the exactly integrated mass matrix
(Karniadakis & Sherwin 1999). SEM has the additional property of
spectral convergence, meaning that, as the polynomial order of the
basis functions is increased, the numerical error goes down expo-
nentially (Karniadakis & Sherwin 1999). The practical implication
of spectral convergence is the low number of nodes per wavelength
required to reach a given accuracy, as demonstrated by the dispersion
analysis of Thompson & Pinksy (1994).

The term ‘spectral element’ indicates that SEM is a mixture of
finite-element and spectral methods (Komatitsch & Vilotte 1998).
As a result, there are two parameters relevant to the mesh in SEM:
the size of the elements and polynomial degree (n − 1, where n is the
number of zero crossings of the basis functions used within each el-
ement). Komatitsch & Tromp (1999) refer to these parameters when
they speak of the global mesh and the local mesh. Concerning the
local mesh, there is a known trade-off between accuracy and numer-
ical cost (Seriani & Priolo 1994), which suggests that polynomial

degrees no higher than 10 should be used within the elements. For
the numerical examples in this paper, we use a polynomial degree
of eight, n� = 8.

7 M O D E L L I N G FAU LT E D S T RU C T U R E S

The flexibility provided by SEM makes possible the simulation of
seismic data for several fault models. In addition to numerically
modelling the full 2-D elastic wavefield, we process the SEM mod-
elled data into its migrated image. Thus, our procedure represents
a complete modelling and processing sequence. Fig. 5 depicts the
geometry of the basic faulted structure we study. The faulted struc-
ture contains several layers and a slip interface confined to the fault
plane (see Fig. 5). Different models, discussed shortly, share this
same faulted structure but differ in the values of the material proper-
ties assigned to the various layers and the slip interface. The faulted
structure depicts a normal fault with a vertical throw of 20 m, a
value characteristic of a small fault. The normal fault dips at 45◦.
The faulted structure shown in Fig. 5 is similar to the one previously
studied by Townsend et al. (1998) to assess changes in seismic at-
tributes caused by faults disrupting the lateral continuity of events.
We discuss the material properties used for the different models
shortly.

We mesh the interior of the fault structure shown in Fig. 5
using a freely available mesh program developed by INRIA,
called EMC2. The program can be downloaded at: http://www-
rocq.inria.fr/gamma/cdrom/www/emc2/eng.htm. As discussed in
the previous section, SEM has both a local and global mesh. The
global mesh is interactively built first using the EMC2 program.
Once the global mesh is built, the local mesh is computed auto-
matically within the SEM code. For the examples in this paper, we
use a semi-structured global mesh since the faulted structure shown
in Fig. 5 is not overly complex. A semi-structured global mesh is
desirable, as opposed to an unstructured mesh, since the accuracy
of SEM depends on the Jacobian of the transformation between a
generally shaped element and a standard rectangular element over
which the integration is performed. Although the global mesh we use
has structure, it honoors the slanted boundaries of the fault. Note
that this would not be possible using a rectilinear ‘checkerboard’
grid as in finite-difference methods. In that case, the slanted face
of the fault would be represented by a ‘stair-stepping’ pattern. This
type of model would give rise to artificial diffractions from the fault
plane. After initial construction of the global mesh for SEM, the
quadrangle elements comprising the mesh are regularized so that
their shapes mimic rectangles as closely as possible. For the faulted

Figure 5. The numerical model (left-hand panel) with a zoom-in of the normal fault (right-hand panel). The zoom area is shown on the numerical model with a
dashed rectangle. A seismic survey has been simulated numerically using this model; details of the survey parameters are given in the text. In the zoom, layers
are labelled with numbers 1–12 corresponding to the material properties for models listed in subsequent tables. For models with a slip interface at the fault, the
portion of the fault plane that slips is shown by a thicker line in the zoom.
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structure in Fig. 5, the entire 2 km × 4 km model is made up of 80 ×
160 global mesh elements. Thus, the global mesh is made up of
quadrangles that are approximately rectangles of dimension 25 m ×
25 m. Each global mesh element is further broken down into
64 (= n2

�) smaller local elements as defined by the employed poly-
nomial degree (n� = 8), as discussed in the previous section.

We simulate a seismic survey over the faulted structure in Fig. 5
using 11 seismic sources. The first source is located 1 km from
the leftmost edge of the model and the source array continues for
2 km at a spacing of 200 m (or a 200 m shot interval). In addition
to the sources, there are 241 receivers employed in the simulated
seismic survey. The first receiver is located 500 m from the leftmost
edge of the model and the receiver array continues for 3 km at a
spacing of 12.5 m. The receiver array is kept constant when exciting
the different sources. We forward model the elastic wavefield by
running the SEM code in serial (one compute node for each shot)
on a 32-processor pentium IV Xeon (3.0-GHz) cluster. All of the
subsequent processing of the modelled wavefield is performed on a
workstation using the Seismic Un*x package (Stockwell 1997).

Tables 1 and 2 show the compressional velocity and the density
of four models for the faulted structure shown in Fig. 5. These four
models represent four different states of overpressure in the foot-
wall of the faulted structure. Assuming a hydrostatic pressure of
2800 psi at the depth of the fault, the different overpressure states

Table 1. P-wave velocities for models 1–4 used in the SEM simulations. The
vertical throw between the upthrown (layers 2–6) and downthrown (layers
7–11) sediments is 20 m. The geometry of the faulted structure is given in
Fig. 5. The S-wave velocity for each layer is 1500 m s−1 less than the P-wave
velocity, as shown in eq. (11).

Layer Thickness v p (m s−1) v p (m s−1) v p (m s−1) v p (m s−1)
(m) Model 1 Model 2 Model 3 Model 4

1 900 2600 2600 2600 2600
2 50 2750 2570 2660 2705
3 30 2600 2380 2490 2545
4 50 2750 2570 2660 2705
5 30 2600 2380 2490 2545
6 90 2750 2570 2660 2705
7 50 2750 2750 2750 2750
8 30 2600 2600 2600 2600
9 50 2750 2750 2750 2750
10 30 2600 2600 2600 2600
11 90 2750 2750 2750 2750
12 850 2600 2600 2600 2600

Table 2. Densities for models 1–4 used in the SEM simulations. The vertical
throw between the upthrown (layers 2–6) and downthrown (layers 7–11)
sediments is 20 m. The geometry of the faulted structure is given in Fig. 5.

Layer Thickness ρ (kg m−3) ρ (kg m−3) ρ (kg m−3) ρ (kg m−3)
(m) Model 1 Model 2 Model 3 Model 4

1 900 2240 2240 2240 2240
2 50 2280 2240 2260 2270
3 30 2240 2210 2225 2232
4 50 2280 2240 2260 2270
5 30 2240 2210 2225 2232
6 90 2280 2240 2260 2270
7 50 2280 2280 2280 2280
8 30 2240 2240 2240 2240
9 50 2280 2280 2280 2280
10 30 2240 2240 2240 2240
11 90 2280 2280 2280 2280
12 850 2240 2240 2240 2240

yield pore-pressure contrasts �P at the fault of 0 psi (Model 1), 600
psi (Model 2), 300 psi (Model 3) and 150 psi (Model 4). From the
model with no pore-pressure contrast (Model 1), it can be seen from
Tables 1 and 2 that there are two basic rock types: an acoustically
hard shale (ρ = 2280 kg m−3, v p = 2750 m s−1 and v s = 1250 m s−1)
in layers 2, 4, 6, 7, 9 and 11 and an acoustically soft sand (ρ =
2240 kg m−3, v p = 2600 m s−1 and v s = 1100 m s−1) in layers 3,
5, 8 and 10. The overburden and underburden are given the prop-
erties of the sand. The properties of the sand in Model 1 are taken
from a well log (in the A20ST well) that intersected a sand layer
at the South Eugene Island field known as the JD-sand. The shale
values in Model 1 come from the lower bounding shale beneath
the JD-sand. The properties of the other three models (2, 3 and 4)
are calculated using the pore-pressure relations described earlier for
the case of pure undercompaction. Thus, the pore-pressure relations
give the numerical modelling a physical basis applicable to the South
Eugene Island field. Note that the model with no pore-pressure con-
trast (Model 1) simply has juxtaposition contrasts across the fault.
Thus, by comparing the reflectivity of the four models with differ-
ent pore-pressure contrasts, we are able to compare reflectivity due
to juxtapositions to reflectivity dominated by a strong �P at the
fault plane. This is relevant to the observed fault-plane reflectivity
at South Eugene Island since pressure measurements taken near the
large, minibasin-bounding growth fault, known as the A fault, show
a 780 psi increase in pore-pressure over 18 m in going from the hy-
drostatically pressured downthrown sediments to the overpressured
upthrown sediments (Losh et al. 1999). A fault with such a large and
sharp �P, compared to the dominant wavelength of seismic waves
(∼100 m), should reflect the seismic waves due to both the juxtapo-
sitions and the �P across the fault. By comparing the reflectivity of
the four different models, we should be able to estimate how small
a pore-pressure contrast can be and still be seismically detectable.

We utilize the advantages of SEM modelling, as described ear-
lier, to accommodate interfacial slip at the fault in addition to the
juxtaposition contacts and �P across the fault. We chose to imple-
ment slip interfaces with a linear slip law: further detail about these
slip interfaces is given in Appendix A. In this study, we examine
four different values of slip at an interface, as shown in Table 3.
The slip interfaces are fully specified in terms of their normal ηN

and tangential ηT (or shear) compliances. We adopt a relation be-
tween the two compliances given by 2ηN = ηT , following Chaisri
& Krebes (2000). This relation between the two compliances may
also be found in the experimental data of Pyrak-Nolte et al. (1990).
Specifically, in Table 4 of Pyrak-Nolte et al. (1990), the relation
2ηN = ηT is given for sample E30 at a confining stress of 20 MPa
and under dry conditions. We refer to the four slip models in order
from the most to the least slipping as Slip Model A, B, C and D.
Since these slip models only concern the boundary condition at the
fault plane, we may insert these different slip models into the pore-
pressure models shown in Tables 1 and 2. As an example, we may
speak of Slip Model A embedded in Model 1 (the model with no
pore-pressure contrast across the fault) and so on. The four mod-
els of pore-pressure contrasts (Model 1 through 4) and four models
of slip interfaces (Slip Models A–D) thus provide many possible
combinations for this SEM modelling study. Note that, for the slip
interfaces, the entire fault-plane does not slip—only a portion of it
as shown in Fig. 5.

The values for the normal and tangential compliances given in
Table 3 are, in general, orders of magnitude larger than those ob-
served in laboratory or field data (Worthington 2006; Worthing-
ton & Lubbe 2007). We have selected these values for the com-
pliances so that in our numerical simulations reflections from
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Table 3. Four different slip interfaces described in terms of their normal and tangential compliances.
These different slip interfaces are used in the SEM modelling.

Slip-Model Normal compliance, ηN (m Pa−1) Tangential compliance, ηT (m Pa−1)

A 5.0 × 10−10 1.0 × 10−9

B 3.5 × 10−10 7.0 × 10−10

C 2.5 × 10−10 5.0 × 10−10

D 1.0 × 10−10 2.0 × 10−10

Table 4. Different slip interfaces described in terms of their effective layer
parameters assuming a thickness of 10 m and various maximum vertical
effective stress, σ max. The estimates are made under the assumption that
the fault rock began its unloading path after reaching its maximum vertical
effective stress. Relationships between velocity and pore-pressure derived
earlier in the paper are used to relate the compliances of the different slip
interfaces to vertical effective stress σ e and pore-pressure p at South Eugene
Island. Also the pore-pressure estimate assumes a depth of 1850 m, where
the overburden stress is 5500 psi and the hydrostatic pressure is 2800 psi.

Slip-Model σ max ρ (kg m−3) vp (m s−1) σ e (psi) p (psi)

A 2800 2200 2020 10 5490
B 2800 2210 2180 90 5410
C 2800 2220 2290 320 5180
D 2800 2270 2470 1660 3850
A 2400 2180 2040 30 5470
B 2400 2190 2190 240 5260
C 2400 2210 2300 780 4730
A 2000 2150 2060 110 5390
B 2000 2170 2200 700 4800
C 2000 2220 2290 1830 3670
A 1600 2120 2080 450 5050

individual slip interfaces are strong enough to show up distinctly.
Vlastos et al. (2003) adopt a similar approach in their numerical
modelling study of fractures. Such large compliances could easily
be explained by noting that, for instance, the excess normal compli-
ance is given by the fracture density multiplied by the normal com-
pliance of a single fracture (Worthington & Lubbe 2007). For high
fracture densities, as are typically observed at fault zones, the com-
pliances given in Table 3 could, therefore, be realizable since they
would represent a high fracture density multiplied by a much smaller
(and physically possible) single fracture compliance. As pointed out
by Worthington & Hudson (2000) though, such high fracture den-
sities at fault zones are typically complex and are probably not well
described by sets of fractures which are aligned and larger than a
Fresnel zone. Although the compliances given in Table 3 are un-
physically large, as discussed in a following section on the results
of our SEM-based numerical simulations, it turns out that we can
estimate the responses for smaller values of the compliances since
the slip interfaces given in Table 3 are in the weak scattering regime.
In the weak scattering regime, the strength of the reflection is, to a
high degree of approximation, linearly proportional to the normal
and tangential compliances, as described in Appendix A. Thus, in a
following section, we linearly extrapolate our numerical results and
estimate the minimal values of the compliances that give a notable
reflection.

Although the values for the compliances listed in Table 3 are un-
physically large, in a later section of this paper we present a weak
scattering model to relate the reflections from the slip interfaces to
reflections from thin layers. These thin layers represent a simple
model of a finite thickness fault zone. Thus, the reflection from a
particular slip interface is equivalent to the reflection from a ‘family’
of thin layers of varying thicknesses and material properties. Given

the properties of these thin layers, we can use the pore-pressure re-
lationships derived earlier to investigate the values of pore-pressure
in a finite thickness fault zone which reflects waves equivalently to
a slip interface. For now, the values for the compliances listed in
Table 3 are simply parameters describing the degree of weldedness
between the surfaces on either side of the slip interface.

As with many numerical methods, construction of the global mesh
is tied to the material properties (specifically the P- and S-wave
velocities) of the different fault models. For example, it is often
quoted that there must be at least 5 gridpoints per minimum desired
wavelength for SEM modelling to be accurate and not be corrupted
with numerical dispersion (Komatitsch & Tromp 1999). This can be
expressed as λmin/(h/n�) ∼ 5. Note that in this criterion the length
of the global mesh element h is divided by the polynomial order
used for the local mesh n�. This approximation assumes the local
mesh elements are equally spaced within the global mesh element
(Komatitsch & Tromp 1999). Since we initiate our simulations with
an explosive source whose time function is a Ricker wavelet with
a dominant frequency f 0 of 20 Hz, we may take the maximum
desired frequency to be 50 Hz, such that f max = 2.5 f 0. Since the
SEM simulations we perform are elastic, the minimum wavelength
λmin is determined by the minimum S-wave velocity. The minimum
S-wave velocity over all of the fault models is, from Table 1, given
by 880 m s−1 and the minimum wavelength λmin is determined
by the minimum S-wave velocity divided by the maximum desired
frequency. Thus, λmin = 17.6 m. As stated before, a typical global
mesh element has sides of length h = 25 m and the polynomial
degree employed in the simulations is n� = 8. Therefore, at least
about 5.6 gridpoints exist per minimum desired wavelength for all
of the models.

In addition to the need for 5 gridpoints per minimum desired
wavelength, there are also numerical stability considerations. In con-
trast to numerical dispersion considered above, numerical stability
is determined by the maximum propagation velocity, which for the
elastic SEM code is the maximum P-wave velocity of 2750 m s−1

(see Table 1). Stability is formally expressed by the CFL-type cri-
terion

vmax�t

hmin
≤ 0.5, (12)

where �t is the time step and hmin is the minimum length of a local
mesh element in the model. Again using the approximation that a
global mesh element, with a side of length 25 m broken up into n�

local mesh elements, hmin = 25 m/8 = 3.125 m for n� = 8. Along
with the fact that vmax is equal to 2750 m s−1, this gives the criteria
for a maximum time step to ensure stability as �t ≤ 0.00057 s.
We chose to execute the SEM examples shown in this paper with
�t = 0.0001 s to ensure stability. We include a safety factor of
approximately 5 in our choice of �t since the value for hmin we
use is a high estimate: the local mesh elements for SEM are not in
fact equally spaced within a global mesh element (Komatitsch &
Tromp 1999). This unequal spacing leads hmin to be smaller than
our earlier estimate. After executing the SEM code with this value
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of �t , we simply down-sample the seismograms by taking every
20th sample to simulate seismic sections with a sampling rate of
2 ms, as is common in the seismic industry.

Since the SEM code is elastic, both primary PP-reflections and
converted PS-reflections show up on the vertical component of the
displacement seismograms. We mute the converted waves in order
to proceed with conventional P wave time-processing. We subtract
off the direct waves (P, S and Rayleigh) by running a homogeneous
subsurface simulation with the elastic properties of the overbur-
den (shown as layer 1 in Fig. 5). After this step, we perform a
geometrical-spreading correction to compensate for the (approxi-
mately) spherical divergence of the wavefront emanating from the
source, a normal moveout (NMO) correction to flatten reflections
from horizontal layers in a common-midpoint gather (CMP gather),
a dip moveout (DMO) correction to flatten reflections from dipping
reflectors (e.g. the fault-plane reflection), and finally a summation
over different source-receiver offsets for a single CMP (a stack) to
simulate zero-offset data (Yilmaz 1987; Black et al. 1993). With the
simulated zero-offset section, we proceed with a constant-velocity
migration using the velocity of the overburden. A source of error
in this simulation originates from the slight undermigration of the
deepest reflectors and the fault-plane reflection. We chose to migrate
with constant velocity since we have interpreted time-migrated seis-
mic sections in the Gulf of Mexico (Haney et al. 2004, 2005b) and
wanted the modelling and processing sequence to mimic the ob-
served data as closely as possible.

There is one final processing step applied to the migrated data.
After producing seismic images, we apply a dip filter in the ω–k
domain to highlight the fault-plane reflections relative to the reflec-
tions from horizontal layers. We use the following transfer function
for the dip filter

K (ω, k) = 1

2n + 1

[
2 sin[(n + 1)(ωpst + k)h/2]

sin[(ωpst + k)h/2]

× cos[n(ωpst + k)h/2] − 1

]
. (13)

This is the form of a dip filter that corresponds to stacking 2n +
1 traces centred about an output point along a dip pst. The param-
eter h is the distance between the traces (assumed constant). An
alternative procedure would be a combination of interpolation and
slant stacking in the t–x domain; however, the ω–k dip filter is suf-
ficiently accurate for the examples shown here. Fig. 6 depicts the
simulated reflection images for the two of the fault models next to
their dip-filtered versions which highlight the fault-plane reflection.
The dip filter applied to these plots stacks a total of 21 traces and
the data and filter have a trace-to-trace spacing of 6.25 m (the mid-
point spacing—half of the receiver spacing). This spatial sampling
avoids any aliasing problems and attacks all events not having the
dip (slope) of the fault-plane reflection. In particular, it attacks the
horizontal reflections.

To demonstrate the action of the dip filter, we show both migrated
images and their dip-filtered versions in Fig. 6. The panels (a) and
(b) of Fig. 6 are for Model 2 and panels (c) and (d) of Fig. 6 are for
Slip Model A embedded in Model 1. Panels (a) and (c) of Fig. 6 show
the migrated images and panels (b) and (d) show the images in (a)
and (c) after dip filtering. Note that the model with a pore-pressure
contrast, Model 2, reflects waves much like a traditional seismic in-
terface in that the reflection coefficient is independent of frequency.
In contrast, the model with a slip interface, Slip Model A embedded
in Model 1, has a reflection coefficient which is approximately the
derivative of the incident wave (Chaisri & Krebes 2000). A slice

cut out of the dip-filtered images in the direction perpendicular to
the fault-plane (shown as a white arrow in the panels (b) and (d) of
Fig. 6) helps in assessing the accuracy of the numerically simulated
fault-plane reflections. In Fig. 7, we plot the reflected waveforms
together with either the incident wavelet (a 20 Hz Ricker wavelet)
in panel (a) or the derivative of the incident wavelet in panel (b),
depending on whether the model contains �P or interfacial slip at
the fault. Note that these plots are in depth—the incident wavelet
(or its derivative) has been plotted in depth in Fig. 7 using the lo-
cal wave speed to make the time-to-depth conversion—and that the
amplitudes have been normalized. Thus, the agreement seen be-
tween the numerical and predicted waveforms in Figs 7(a) and (b)
demonstrates that the SEM modelling, processing and dip-filtering
together produce an accurate shape of the reflected waveform from
the fault plane. In the next section, we examine reflectivity from the
fault plane for combinations of the basic fault models: juxtaposition
contacts, pore-pressure contrasts and models with interfacial slip at
the fault plane embedded in one of the pore-pressure contrast mod-
els. The purpose of this modelling exercise is to study the character
of the various types and combinations of reflectivity associated with
the fault plane.

8 A M P L I T U D E S O F WAV E S
R E F L E C T E D F RO M D I F F E R E N T
FAU LT M O D E L S

Although many possible combinations of the different faulted mod-
els with �P and slip interfaces exist, we chose to highlight two
groups of four models in the following which demonstrate the most
pertinent information regarding the nature of fault-plane reflections.
The first group comprises the four Models (1–4) with different �P
across the fault and allows the comparison of how different values
of �P leave their imprint on the fault-plane reflections. The second
group comprises the four models with different degrees of interfacial
slip at the fault-plane. For this comparison, each of the Slip-Models
(A–D) are embedded in a background model given by Model 2 (see
Tables 1 and 2). Recall that Model 2 is the model with the maximum
amount of �P at the fault plane. Thus, embedding the Slip-Models
in Model 2 tests to what degree the different slip interfaces show up
in the seismic data relative to the maximum amount of �P across
the fault in the employed models.

In Fig. 8, we plot the maximum reflected amplitude within a small
time window (100 ms) of the fault-plane for the four different mod-
els of �P across the fault: 600 psi (Model 2), 300 psi (Model 3),
150 psi (Model 4) and 0 psi (Model 1—a juxtaposition model). Note
that there is not a slip interface at the fault in these examples. All
of these amplitude maps are plotted for the cases with (solid line)
and without (dashed line) 20 per cent Gaussian additive noise cor-
rupting the migrated images. The plots demonstrate that Gaussian
additive noise is efficiently attacked by the dip-filtering step, giv-
ing roughly the 1/

√
N attenuation of noise exploited in stacking

(Haney et al. 2005a). Comparison of the plots shows a roughly lin-
ear relation between the reflection amplitudes and the amount of
�P. As expected, the reflectivity due to the juxtapositions has been
dampened by the dip-filtering applied in the direction of the fault-
plane. For a pore-pressure contrast as small as 150 psi, it is difficult
to tell if a pore-pressure contrast exists at all. Specifically, note the
similarity of Figs 8(c) and (d), especially in the degree with which
the wobbles due to the juxtapositions contribute to the fault reflec-
tivity. Fig. 9 depicts the zero-offset migrated sections from which
these amplitude maps are made. As such, the degree to which the
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Figure 6. Migrated seismic images are shown in the left-hand panels, (a) and (c) and the same images, after applying dip-filtering to highlight the fault-plane
reflections, are shown in the right-hand panels, (b) and (d). Panels (a) and (b) are for Model 2—a pore-pressure contrast across the fault (see Table 1). Panels
(c) and (d) are for Model 1—no pore-pressure contrast across the fault (see Table 1). Although there is no pore-pressure contrast in panels (c) and (d), the fault
plane is a slip interface. The parameters describing the slip interface are referred to as Slip model A (see Table 3) and, hence, we refer to the model used in
panels (c) and (d) as Slip model A embedded in Model 1. The traces in Fig. 7 are sliced from these images in a direction normal to the fault-plane, as shown
by an arrow in the dip-filtered images. The horizontal events in the upper panels appear to be not as well suppressed as in the lower panels simply because the
fault-plane reflection is stronger in the bottom panel and, as a result, the maximum amplitude of the display is higher.

fault-plane reflections show up in the zero-offset migrated sections
prior to dip-filtering in the direction of the fault-plane can be as-
sessed.

In Fig. 10, we again plot the maximum reflected amplitude within
a small time window (100 ms) of the fault-plane for Slip-Models A,
B, C and D. As discussed before, these Slip-Models are embedded in
a background model given by Model 2. From Fig. 10, it is seen that
the amplitude of the fault-plane reflection attributable to interfacial
slip is reduced as the normal and shear compliances are decreased in
going from Slip-Model A to D. The reduction in reflected amplitude
is roughly linear in proportion to the reduction of the compliances.
This occurs because the reflection coefficient is proportional to the
compliance for a relatively weakly slipping interface, as shown in
eq. (A6) of Appendix A.

The linearization employed in the derivation of eq. (A6) in Ap-
pendix A is valid for the Slip-Models considered here because the
dimensionless shear and normal compliances of the interfaces are

considerably less than unity. The dimensionless compliance, and
not compliance itself, is the measure of how strongly reflecting a
slip interface is, since the dimensionless compliance accounts for
different frequencies of the incident wave and different local mate-
rial properties. From Appendix A, we know that the dimensionless
normal compliance is ωηN ρα sec θ , where ω is the dominant fre-
quency of the incident wave (20 Hz), ηN is the normal compliance,
ρ is the average density across the interface, α is the average P-wave
velocity across the interface and θ is the incidence angle. For nor-
mal incidence (θ = 0◦), an average density ρ = 2260 kg m−3

and an average P-wave velocity v p = 2700 m s−1, the dimen-
sionless normal compliance varies between 0.38 and 0.08 for Slip-
Models A–D. When this dimensionless number is less than unity,
we may expect the strength of the reflections to be linear as a func-
tion of the compliance, as observed in Fig. 10 for the Slip-Models.
Similarly for tangential case, the dimensionless tangential compli-
ance is ωηT ρβ cos θ . For normal incidence (θ = 0◦), an average
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Figure 7. In panel (a), the reflected wave from Model 2, a pore-pressure contrast, is shown as a dashed line. The reflected waveform for Model 2 should be
the incident wavelet, which is plotted in panel (a) as a solid line for comparison with the numerical result. In panel (b), the reflected wave from Slip-Model A
embedded in Model 1, a fault with a slip interface, is shown as a dashed line. The reflected waveform for Slip-Model A embedded in Model 1 should be the
derivative of the incident wavelet, which is plotted in panel (b) as a solid line for comparison with the numerical result. The reflected waveforms for the two
models shown in panels (a) and (b) are different in shape since a pore-pressure contrast acts like an all-pass filter in reflection, and a slip interface acts like a
high-pass filter.
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Figure 8. Amplitude along fault-plane for Model 2 in panel (a), Model 3 in panel (b), Model 4 in panel (c) and Model 1 in panel (d). See Tables 1 and 2 for
a description of the different Models. These amplitude maps are plotted both with (solid line) and without (dashed line) 20 per cent Gaussian additive noise.
The amplitude is plotted as a function of depth on the fault-plane and the extent of the fault-plane is shown with a horizontal line in the bottom portion of
each plot. These models represent the situations of: 600 psi pore-pressure difference across the fault (a), 300 psi pore-pressure difference across the fault (b),
150 psi pore-pressure difference across the fault (c) and 0 psi pore-pressure difference across the fault; in other words, the juxtaposition contact model (d).
There is not a slip interface at the fault in these examples.

density ρ = 2260 kg m−3 and an average S-wave velocity v p =
1200 m s−1, the dimensionless tangential compliance varies between
0.34 and 0.07 for Slip-Models A–D. Thus, it is entirely expected
that the reflection amplitudes scale linearly with compliances in
Fig. 10.

For the smallest compliance, Slip-Model D, the magnitude of the
reflection is on the same order as that of the reflection caused by the
�P present in Model 2 (600 psi). Such a similarity is seen by com-
paring Figs 8(a) and 10(d). Thus, the degree of slip in Slip-Model
D would seem to be a lower limit of compliance for indications of

interfacial slip to appear when �P = 600 psi across the fault. Fig. 11
depicts the zero-offset migrated sections from which the amplitude
maps in Fig. 10 are made. The reflections due to the interfacial slip at
the fault-plane can clearly be made out even without the dip-filtering
step.

As demonstrated by Fig. 8, a linear relation may be assumed be-
tween the magnitude of the fault-plane reflection due to a �P and
the value for �P itself. This linear behaviour is due to the fact that
the values of �P considered here do not drastically modify the elas-
tic parameters across the fault. That is, the changes in the elastic
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Figure 9. Zero-offset migrated sections for Model 2 in panel (a), Model 3 in panel (b), Model 4 in panel (c) and Model 1 in panel (d). See Tables 1 and 2 for a
description of the different Models. The amplitude plots along the fault plane in Fig. 8 are derived from these zero-offset sections after dip-filtering.

parameters across the interfaces divided by their average values
across the interface, �α/α, �β/β and �ρ/ρ, are less than unity.
Since a linear relation also exists between the degree of interfacial
slip and the strength of reflection, we can estimate the minimal de-
gree of slip for a reflection from a slip interface to show up in the
presence of juxtapositions only (when �P = 0 psi). Given that Slip-
Model D is the minimal amount of slip for notable reflections in the
presence of a �P = 600 psi (Model 2), a slip interface with shear and
normal compliances reduced by one-fourth of those in Slip-Model 4
would constitute the threshold for indications of interfacial slip to
appear in Model 4, when �P = 150 psi across the fault. As also
demonstrated by Fig. 8, fault reflectivity from pure juxtapositions
(Model 1, �P = 0 psi) are roughly half as strong as in the case of
�P = 150 psi. Thus, a slip interface with shear and normal com-
pliances reduced by one-eighth of those in Slip-Model 4 would
constitute the threshold for indications of interfacial slip to appear
when �P = 0 psi across the fault. From Table 3, such a mini-
mally (seismically) visible slip interface would have ηN = 1.25 ×
10−11 m Pa−1 and ηT = 2.5 × 10−11 m Pa−1. Reflections from indi-
vidual slip interfaces with compliances less than these values would
be impossible to make out in the presence of the reflectivity due to
juxtapositions at the fault-plane, given the typical elastic properties
for sands and shales at South Eugene Island field.

9 R E L AT I N G S L I P I N T E R FA C E S T O A
P R E S S U R I Z E D FAU LT

The slip interfaces used in the numerical modelling and shown in
Table 3 do not, up to this point, have any physical meaning in terms
of the pore-pressure locally at the fault. In this section, we relate
a slip interface to an effective-layer model that demonstrates much
of the same wave-scattering behaviour. Thus, a single slip interface
can thought to model a ‘family’ of thin layers with varying elastic
properties and thicknesses. With an effective thin layer described
in terms of its thickness, density and velocity, the empirical rela-
tionships between effective stress and density and effective stress
and velocity we derived earlier can lend the slip interfaces physi-
cal meaning in terms of pore-pressure. Note that, in what follows,
the relationships we derive for compliance of an effective thin layer
should not be interpreted physically in terms of an actual fracture.
What we are doing here is simply relating a slip interface to a family
of thin layers in terms of the similarity of their reflected waveforms.

The derivation presented here is for normally incident P waves;
we focus on normally incident P waves since the seismic imaging
discussed in previous sections utilized PP-scattered waves at small
incidence angles. In fact, for a given spreadlength of a seismic sur-
vey, the incidence angles for a fault plane reflection are smaller than
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Figure 10. Amplitude along fault-plane for Slip-Model A in panel (a), Slip-Model B in panel (b), Slip-Model C in panel (c) and Slip-Model D in panel (d).
See Table 4 for a description of the different Slip-Models. All Slip-Models shown here are for a fault embedded in Model 2 (see Tables 1 and 2) having a
pore-pressure contrast of 600 psi across the fault. These amplitude maps are plotted both with (solid line) and without (dashed line) 20 per cent Gaussian
additive noise. The amplitude is plotted as a function of depth on the fault-plane and the extent of the fault-plane is shown with a long horizontal line in the
bottom portion of each plot. The subportion of the fault where interfacial slip occurs is shown beneath this line with a shorter horizontal line. The maximum
amplitude occurs near the centre of the slipping portion of the fault in each slip-model. The amplitude map resembles a triangle since it is, roughly speaking,
the convolution of two boxcar functions: the slipping portion of the fault-plane and the dip filter. In moving from Slip-Model A to D, the compliance of the
fault slip becomes smaller and, as a result, the reflection magnitude scales in the same proportion, as predicted by eq. (A6) in Appendix A for a weakly slipping
interface. The different Slip-Models invoke slip at the fault to represent weakness due to elevated pore-pressure.

those for a horizontal interface at the same depth. Our effective-layer
model begins from a weak scattering assumption. For a thin layer, if
the interface reflection coefficients at the upper and lower boundary
are small, then the entire series of reverberations (Aki & Richards
1980) within the layer can be neglected. The total reflection coef-
ficient from the thin layer can thus be approximated simply as the
sum of the reflections off the upper and lower interface. For the case
when the thin layer is sandwiched between two identical media,

Rtot ≈ RPP − RPP exp

(
2iωh

αL

)
, (14)

where RPP is the P wave to P wave (PP) reflection coefficient at the
upper interface (the reflection at the lower interface is − RPP), ω

is the frequency, h is the thickness of the thin layer, and α L is the
P-wave velocity in the thin layer. In eq. (14), we have assumed that
the impedance difference between the thin layer and the host medium
is small enough that the transmission coefficients in moving from
the host medium into the thin layer and vice versa are close to 1.
This is consistent with the weak-scattering assumption.

The next approximation relies on the layer being sufficiently thin.
If, for the argument of the exponential term in eq. (14),

2ωh

αL
 1, (15)

then the exponential can be expanded to first order in a Taylor series

exp

(
2iωh

αL

)
≈ 1 + 2iωh

αL
. (16)

Note that the condition in eq. (15) states that 1 � 4πh/λL , where λL

is the wavelength of the wave in the thin layer. Hence, the condition

means that only a fraction of a wavelength fits in the layer. Inserting
the Taylor series approximation into eq. (14) gives

Rtot ≈ −RPP
2iωh

αL
. (17)

This expression shows that the total reflection from a thin weak layer
is proportional to the derivative of the incident wave. Widess has
discussed this fact in a paper on vertical seismic resolution (Widess
1973).

From eq. (A6) in the Appendix, the normal incidence PP reflec-
tion coefficient for a weakly slipping interface between two identical
media (the host medium) is

Rs
P P ≈ iωηN ρα

2
, (18)

where ω is the frequency, ηN is the normal compliance, ρ is the
density of the host medium, α is the P-wave velocity of the host
medium, and the superscript s indicates that this is the reflection
coefficient for a slipping interface. This equation comes with its
own assumption, namely that the dimensionless normal compliance
is much smaller than 1, ωηN ρα  1. Equating this expression to
eq. (17) gives

iωηN ρα

2
= −RPP

2iωh

αL
. (19)

By canceling common factors and solving this for ηN , the normal
compliance, we get

ηN = − 4h

ρααL
RPP . (20)
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Figure 11. Zero-offset migrated sections for Slip-Model A in panel (a), Slip-Model B in panel (b), Slip-Model C in panel (c) and Slip-Model D in panel
(d). See Table 4 for a description of the different Slip-Models. All Slip-Models shown here are for a fault embedded in Model 2 (see Tables 1 and 2) having
a pore-pressure contrast of 600 psi across the fault. The amplitude plots along the fault plane in Fig. 10 are derived from these zero-offset sections after
dip-filtering.

In the weak scattering approximation, we can substitute a weak-
scattering approximation for the normal-incidence welded-interface
reflection coefficient RPP. This can be obtained from eq. (A6) in the
Appendix by ignoring the terms related to slip

RPP = 1

2

(
�ρ

ρ̄
+ �α

ᾱ

)
, (21)

where �ρ = ρL − ρ, ρ̄ = (ρL + ρ)/2, �α = αL − α and ᾱ =
(αL +α)/2. Rewriting eq. (21) in terms of the properties of the layer
and host medium gives

RPP = ρL − ρ

ρL + ρ
+ αL − α

αL + α
. (22)

Substituting this expression into eq. (20) for RPP yields

ηN = 4h

ρααL

(
ρ − ρL

ρ + ρL
+ α − αL

α + αL

)
. (23)

Since ηN is by definition greater than zero, the effective thin layer is
allowed to have relatively lower density ρ > ρ L and lower velocity
α >α L than the host medium. This is the case of a locally pressurized
fault, since velocity and density decrease with increase in pore-
pressure. We note that the weak-scattering approximation employed

here should be appropriate for PP reflection from an overpressurized
fault since, according to the pore-pressure relationships described
earlier, αL → 0 does not occur for any value of the pore-pressure.
This may not be the case for shear waves, though, since the shear
wave velocity can go to nearly zero at zero effective stress (Zimmer
et al. 2002).

Using the effective–stress relationships derived in previous sec-
tions for ρ L and α L in the case of unloading, ρu

L (σ d ) and αu
L (σ d ),

and fixing the depth (or, equivalently the lithostatic stress σ v) so
that the effective stress varies only with pore-pressure (σ d = σ v −
p), the compliance of a fracture can be put in terms of the thickness
of the layer and the pore-pressure

ηN (h, P) = 4h

ρααu
L (P)

[
ρ − ρu

L (P)

ρ + ρu
L (P)

+ α − αu
L (P)

α + αu
L (P)

]
. (24)

Note that we use the unloading relationships for ρ L and α L . This
is because a slip interface is indicative of a locally weak fault. The
relative weakness is due to the fault being overpressured, where by
overpressured we mean its effective elastic properties are modified
by pore-pressure as seen in the well log data of the previous sec-
tions. The overpressure in a fault could perhaps be from pressurized
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fluid migrating up the fault plane, as recently observed by Haney
et al. (2005b). Hence, the correct pressure curve to use is the un-
loading curve, since the migrating fluid is entering the pore space
and unloading the fault zone sediments. This detail has also been
discussed by Revil & Cathles (2002). The unloading curve requires
an additional parameter, the maximum past effective stress σ max that
the fault rock has experienced before being unloaded to its current
state. With this information, the slip models used in the previous
modelling section can be related to an effective thin layer (or fault
zone) described by four parameters: a fault zone of thickness h, fixed
depth z, excess fluid pressure P − P h and maximum past effective
stress σ max.

Based on these considerations, the value of the pore-pressure
corresponding to a particular linear-slip interface depends on three
other parameters besides the pore-pressure. In Table 4, we fix two
of these parameters—the depth of the fault zone (1850 m) and the
thickness of the fault zone (10 m). We take the thickness of the fault
based on the well logs that penetrated the B-fault zone. The table
shows the values of the effective thin layer for each Slip-Model,
A–D, while σ max varies between 1600 and 2800 psi. The table also
shows the effective stress corresponding to those values of velocity
and density along the unloading path, and uses the assumed depth
to convert the effective stress to pore-pressure. We do not show re-
sults for variation with thickness h since its effect is a simple linear
scaling, as seen in eq. (23). The variation with depth z is also fairly
unimportant since it changes only the value of the pore-pressure for
a given effective stress. Note that, in Table 4, certain values of the
compliance do not exist for some values of σ max since the compli-
ance does not fall in the range of possible compliances (i.e. it is
not positive) based on the values of density and velocity. Hence,
some small compliance values cannot be modelled for certain com-
binations of h, z and σ max. In order to obtain smaller compliance
values in these cases, the thickness of the fault would need to be
made smaller because the compliance, from eq. (23), scales linearly
with h.

In the A10ST well at South Eugene Island, the effective stress in
the B-fault zone is measured to be as low as 166 psi (Losh et al.
1999), much lower than the effective stresses in the adjacent down
or upthrown sediments. In other words, the fault itself is locally
overpressured and weak compared to the host rock. Therefore, some
of the low values for effective stress shown in Table 4, while unusual,
are entirely possible for the growth faults at South Eugene Island.
Anomalously low effective stresses of 575 and 807 psi were also
measured in the A20ST well as it crossed the A-fault system (Losh
et al. 1999). The locally high pore-pressures in the B-fault zone
reported in Losh et al. (1999) have been implicated as the cause of
anomalously high reflectivity observed at the B-fault plane (Haney
et al. 2005b). Based on our numerical modelling, a plausible model
for the B-fault zone in the location of the reported anomalously high
reflectivity would be either Slip-Model A or B as shown in Table 4,
for the case of σ max = 2000 psi.

1 0 C O N C L U S I O N

We have presented a complete numerical modelling experiment by
utilizing an SEM implementation of the 2-D elastic wave equa-
tion and processing the resulting waveforms into their time-migrated
images. We derived a simple dip filter and used it to isolate fault-
plane reflections. We then exploited the relationships between the
elastic parameters, density and velocity, to create physically mean-
ingful models of sealing faults that maintain a �P of up to 600 psi.
For these �P models, we assumed that the overpressure mechanism

is purely due to undercompaction. In the course of this modelling,
we found that the minimum �P necessary to give rise to substantial
fault-plane reflections is on the order of 150 psi at the South Eu-
gene Island field. We have found evidence in field data arising from
the lack of a reflection from the F-fault (see Fig. 1) supporting this
estimate (Haney, 2005).

Taking advantage of the SEM modelling code’s ability to accom-
modate linear-slip interfaces, we selected four different values of
the normal and shear compliances for the fault interface. We found
that the reflections from the slip interfaces dominate the reflections
from pore-pressure contrasts across the fault for compliance values
above ∼10−10 m Pa−1. By noting that the different slip interfaces
were in the weak scattering regime, we estimated the minimal val-
ues of the compliances necessary to produce a notable reflection at a
fault without any �P across it. Looking for physical insight into the
meaning of the slip interfaces, we derived, from a weak-scattering
model, an equivalent thin, weak layer that gives virtually the same
reflection as a linear-slip interface. We used this equivalent layer
model to relate the slip interface to realistic values of pore-pressure
in a fault zone at South Eugene Island. To do so required exten-
sive use of the effective–stress relationships for the unloading paths
derived from well logs at the South Eugene Island field.

Interpreting fault zone properties from fault-plane reflections is
thus closely tied to knowledge of the subsurface distribution of
fluids (Hatchell 2000) and stress histories. By paying attention to
the details of the rock physics of pore-pressure and utilizing ad-
vanced numerical techniques for modelling wave propagation, the
physical mechanisms giving rise to fault-plane reflections can be
thoroughly investigated. Understanding the relative importance of
these physical mechanisms makes possible the detection of fault
properties through the prevalent techniques of seismic reflection
imaging.
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A P P E N D I X A : S P E C T R A L E L E M E N T
M O D E L L I N G O F A L I N E A R - S L I P
I N T E R FA C E

We chose the SEM to simulate fault reflectivity for its ability
to allow a free-form mesh and in order to include the possibil-
ity of slip at interfaces in our numerical models. As evidence of
SEM’s ability to handle challenging boundary conditions, it has re-
cently been applied to wave propagation near a fluid–solid interface
(Komatitsch et al. 2000). Interfacial slip had been implemented
previously in SEM2DPACK, the 2-D SEM code available online
at the Orfeus Seismological Software Library: http://www.orfeus-
eu.org/links/softwarelib.htm. SEM2DPACK was developed by one
of the authors, J.-P. Ampuero, for the simulation of earthquake dy-
namics (Ampuero 2002). In this work, we adapted the interface
condition to a linear-slip law.

For incident P–SV waves, the linear-slip law is a boundary con-
dition expressed as (Schoenberg 1980)

t · n̂ = Z−1�u (A1)

�u =
[

u+
z − u−

z

u+
x − u−

x

]
, Z−1 =

[
η−1

T 0

0 η−1
N

]
,

t =
[
σxx σxz

σxz σzz

]
, n̂ =

[
0

1

]
, (A2)

where the superscript (−) refers to the side of the interface on which
the wave is incident, (+) the other side of the interface, u x and u z

are the horizontal and vertical particle displacements, σ xx and σ zz

are the normal stresses and σ xz is the shear stress. The particular
choice of the normal vector in eq. (A2) means that we consider here
a horizontal slip interface. The SEM code has no such restriction;
any orientation of a slip interface can be handled. The matrix Z−1

appearing in eqs (A1) and (A2) is the stiffness matrix of the slip
interface (inverse of the compliance matrix). The fact that Z−1 is
diagonal means we only consider rotationally symmetric slip inter-
faces (Haugen & Schoenberg 2000) in our SEM implementation.
The parameters ηN and ηT are the normal and tangential compli-
ances, respectively, and these quantify the degree of slip along the
interface. For ηN = 0 and ηT = 0, the interface is welded, and for
ηN = ∞ and ηT = ∞, it is a stress free surface.

The boundary condition described by eqs (A1) and (A2) can be
obtained in the limit of a thin, weak layer in welded contact with

its surrounding rock. As a result, linear-slip has been suggested
as a good model for scattering from faults and fractures (Coates
& Schoenberg 1995). With this in mind, it is important not to
confuse the slip model in eqs (A1) and (A2) with slip that occurs
along a fault during an earthquake. The linear-slip model entails
some slipping at the interface that is the order of particle displace-
ments during the passage of a seismic wave (∼10−6 m). Active,
earthquake-generating faults typically slip on a length scale three
to four orders of magnitude larger (∼10−3–10−2 m). Earthquake
slip is also hysteretic, whereas interfaces undergoing linear-slip re-
turn to their equilibrium state after the seismic wave has moved
on.

To implement the linear-slip model in SEM, the weak form of the
equation of motion is needed (Komatitsch & Tromp 1999)∫

�

ρw · ∂2
t u d3x = −

∫
�

∇w: t d3x +
∫

�

[t · n̂] · w d2x, (A3)

where u is the displacement, ρ is the density, t is the stress tensor,
t·n̂ is the traction on the slip interface, and w is the test function. The
semi-colons in eq. (A3) represent tensor contraction. The last term
on the right-hand side of eq. (A3) is the contribution from the slip
interface �, which is here taken to be planar. At the slip interface,
we employ split nodes (Andrews 1999) in the spectral element mesh
to accurately model a fracture.

After discretizing the displacement field and assembling the
global mass and stiffness matrices, eq. (A3) can be written as the
matrix equation (Komatitsch & Tromp 1999)

MÜ = −KU + BT, (A4)

where M and K the mass and stiffness matrices, respectively, U is
the displacement vector of the global system, and T is the traction
vector of the global system. The last term is non-zero only on the
part of the boundary where slip occurs; this restriction is imposed
by the matrix B. The essence of this SEM implementation of a
slip interface is that the two separate meshes on either side of the
slip interface (denoted here as mesh 1 and mesh 2) are put into
communication via the last term in eq. (A4) by using the slip law in
eq. (A1)

M1Ü1 = −K1U1 + η−1
N B1�U z

1 + η−1
T B1�U x

1

M2Ü2 = −K2U2 − η−1
N B2�U z

2 − η−1
T B2�U x

2 , (A5)

where the asymmetry of the ± signs between the two last terms
is in accordance with Newton’s third law. The subscripts 1 and 2
indicate to which mesh the variables belong. The superscripts z and
x label the normal and tangential component of the displacement
discontinuity. In the formulation we have outlined here, the slip law,
eq. (A1), enters into the equation of motion by a substitution of the
slip for the traction at the fault. Note that, due to the compliance
of the slip interface appearing in the denominator of eq. (A5), the
numerical scheme experiences conditional instability for too small
a compliance.

The SEM implementation of eq. (A5) utilizes an explicit New-
mark scheme (Zienkiewicz & Taylor 2000) consisting of a predictor,
a solver and a corrector step (Komatitsch & Vilotte 1998) as shown
in Table (A1). Waveforms computed with this implementation are
displayed in Fig. A1. Our model for this example is an elongated
2-D block, whose side boundaries, shown as dashed in Fig. A1,
are periodic and whose upper and lower boundaries are absorbing.
Consistent with the periodic boundary condition, we excite a uni-
directional plane P wave near the top of the block. In front of the
plane wave, we measure the wavefield with ten receivers. A slip
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Table A1. The predictor–corrector algorithm: n stands for the time step, Ü is the acceleration, �t
is the time step increment, U is the displacement and V is the velocity.

for n = 1 : N

Predictor
U 1(n+1) = U 1(n) + 1

2 �t V 1(n)
U 2(n+1) = U 2(n) + 1

2 �t V 2(n)
V 1(n+1) = V 1(n)
V 2(n+1) = V 2(n)

Solver
Solve eq. (A5) for both Ü1(n+1) and Ü2(n+1) using
the predicted values U 1(n+1), U 2(n+1), V 1(n+1) and V 2(n+1).
This is straightforward since M 1 and M 2 are diagonal.

Corrector
U 1(n+1) = U 1(n+1) + 1

2 �t V 1(n) + 1
2 �t2 Ü1(n+1)

U 2(n+1) = U 2(n+1) + 1
2 �t V 2(n) + 1

2 �t2 Ü2(n+1)
V 1(n+1) = V 1(n+1) + �t Ü1(n+1)
V 2(n+1) = V 2(n+1) + �t Ü2(n+1)

end
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Figure A1. Numerical simulation of a normally incident P wave scattering from a linear-slip interface. In panel (a) is the model, showing ten numbered receiver
locations and a plane wave incident from the upper end of the model. The linear-slip interface is between the receivers 5 and 6. In panel (b) are seismograms taken
at each of the receivers. At t = 0.6 s, the incident wave reflects from the linear-slip interface. The media above and below the linear-slip interface are identical
and, therefore, no reflection would occur had there been no slip. In panel (c) is a quantitative comparison between the reflection coefficient calculated from the
uppermost seismogram, receiver 10 (circles), and the theoretically exact reflection coefficient for this slip interface (solid line). The reflection coefficient for
receiver 10 is calculated by isolating the incident and reflected waveforms and taking their spectral ratio. The agreement validates the numerical technique used
to model slip interfaces. Also shown as a dashed line is the approximate reflection coefficient given by eq. (A6). The approximation becomes progressively
worse for higher frequencies.

interface cuts through the center of the block, between receivers
5 and 6, which is characterized by a normal compliance of 2.2 ×
10−9 m Pa−1. The slip interface has also a shear compliance, but
the P wave is incident normally and, therefore, excites no shear. The

media on either side of the slip interface are identical with density,
P- and S-wave velocity of 2300 kg m−3, 2000 m s−1 and 1000 m s−1,
respectively. The plane wave source waveform is a Ricker wavelet
with a dominant frequency of 10 Hz.
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Since Chaisri & Krebes (2000) have previously solved for the
frequency-dependent reflection coefficient from a slip interface, we
can check our numerical result against the analytic solution. In the
case of weak elastic contrasts across the slip interface, small (di-
mensionless) compliances, and small angles of incidence, the lin-
earized PP-reflection coefficient at a planar slip interface is a good
approximation to the true reflection coefficient. The PP-reflection
coefficient in this case is given by:

RPP ≈
[

1

2
− 2

(
β

α

)2

sin2 θ

]
�ρ

ρ
+ 1

2
s2θ

�α

α

− 4

(
β

α

)2

sin2 θ
�β

β
+ i

[
1

2
− 2

(
β

α

)2

sin2 θ

]
sθωηN ρα

−2i

(
β

α

)3

cos θ sin2 θωηT ρβ, (A6)

where �α, �β and �ρ are the changes in P-, S-wave velocity and
density of the two half-spaces, α, β and ρ are the average P-, S-wave
velocity and density of the two half-spaces, ω is the angular fre-
quency of the incident wave, ηT and ηN are the tangential and normal

compliances of the interface, and θ is the reflection/incidence angle.
As previously stated, the approximation in eq. (A6) holds for small
relative changes in the medium parameters (�α/α, �β/β, �ρ/ρ 
1), small dimensionless shear compliance (ωη I ρβ cos θ  1), small
dimensionless normal compliance (ωηT ρα sec θ  1), and small
angles of incidence. Note that, for the case of small dimensionless
compliances, the reflected wave due to a pure slip interface between
two identical half-spaces is proportional to the derivative of the in-
cident wave.

We plot the wavefield interacting with the slip interface at each
of the 10 receivers in Fig. A1. For the value of slip used in this
example (2.2 × 10−9 m Pa−1), the dimensionless normal compliance
is relatively small and the reflection from the slip interface is well
approximated by eq. (A6). We show a quantitative benchmarking
between the numerically calculated reflection coefficient (shown
by circles) and the exact theoretical reflection coefficient (depicted
by the solid line) in the lower panel of Fig. A1. The agreement
between the two curves supports the numerical implementation for
slip interfaces used in this paper. The approximate expression for
the reflection coefficient, eq. (A6), is shown in Fig. A1 as a dashed
line and is seen to become a worse approximation with increasing
frequency.
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