312 research outputs found

    Near-UV photolysis cross sections of CH_3OOH and HOCH_2OOH determined via action spectroscopy

    Get PDF
    Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV) region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH) is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV photodissociation cross section as low as 10−23 cm2 molecule−1. The method is applied to determine the photodissociation cross sections for methyl hydroperoxide (CH3OOH; MHP) and hydroxymethyl hydroperoxide (HOCH2OOH; HMHP) in the 305–365 nm wavelength range. The measured cross sections are in good agreement with previous measurements of absorption cross sections

    Vibrational overtone initiated unimolecular dissociation of HOCH_2OOH and HOCD_2OOH: Evidence for mode selective behavior

    Get PDF
    The vibrational overtone induced unimolecular dissociation of HMHP (HOCH2OOH) and HMHP-d2 (HOCD2OOH) into OH and HOCH2O (HOCD2O) fragments is investigated in the region of the 4nuOH and 5nuOH bands. The unimolecular dissociation rates in the threshold region, corresponding to the 4nuOH band, exhibit measurable differences associated with excitation of the OH stretch of the alcohol versus the peroxide functional group, with the higher energy alcohol OH stretching state exhibiting a slower dissociation rate compared to the lower energy peroxide OH stretch in both HMHP and HMHP-d2. Predictions using the Rice–Ramsperger–Kassel–Marcus theory give rates that are in reasonably good agreement with the measured dissociation rate for the alcohol OH stretch but considerably differ from the measured rates for the peroxide OH stretch in both isotopomers. The present results are interpreted as suggesting that the extent of intramolecular vibrational energy redistribution (IVR) is different for the two OH stretching states associated with the two functional groups in HMHP, with IVR being substantially less complete for the peroxide OH stretch. Analysis of the OH fragment product state distributions in conjunction with phase-space theory simulation gives a D0 value of 38±0.7 kcal/mole for breaking the peroxide bond in HMHP

    Near-IR photodissociation of peroxy acetyl nitrate

    Get PDF
    Measurements of the C-H overtone transition strengths combined with estimates of the photodissociation cross sections for these transitions suggest that near-IR photodissociation of peroxy acetyl nitrate (PAN) is less significant (Jnear−IR ~3×10^−8 s^−1 at noon) in the lower atmosphere than competing sinks resulting from unimolecular decomposition and ultraviolet photolysis. This is in contrast to the photochemical behavior of a related peroxy nitrate, pernitric acid (PNA), that undergoes rapid near-IR photolysis in the atmosphere with Jnear−IR ~10^−5 s^−1 at noon (Roehl et al., 2002). This difference is attributed to the larger binding energy and larger number of vibrational degrees of 10 freedom in PAN, which make 4[Greek nu]CH the lowest overtone excitation with a high photodissociation yield (as opposed to 2[Greek nu]OH in PNA)

    Comparison of XH_2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network

    Get PDF
    Understanding the atmospheric distribution of water (H_2O) is crucial for global warming studies and climate change mitigation. In this context, reliable satellite data are extremely valuable for their global and continuous coverage, once their quality has been assessed. Short-wavelength infrared spectra are acquired by the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) aboard the Greenhouse gases Observing Satellite (GOSAT). From these, column-averaged dry-air mole fractions of carbon dioxide, methane and water vapor (XH_2O) have been retrieved at the National Institute for Environmental Studies (NIES, Japan) and are available as a Level 2 research product. We compare the NIES XH_2O data, Version 02.21, with retrievals from the ground-based Total Carbon Column Observing Network (TCCON, Version GGG2014). The datasets are in good overall agreement, with GOSAT data showing a slight global low bias of −3.1% ± 24.0%, good consistency over different locations (station bias of −1.53% ± 10.35%) and reasonable correlation with TCCON (R = 0.89). We identified two potential sources of discrepancy between the NIES and TCCON retrievals over land. While the TCCON XH_2O amounts can reach 6000–7000 ppm when the atmospheric water content is high, the correlated NIES values do not exceed 5500 ppm. This could be due to a dry bias of TANSO-FTS in situations of high humidity and aerosol content. We also determined that the GOSAT-TCCON differences directly depend on the altitude difference between the TANSO-FTS footprint and the TCCON site. Further analysis will account for these biases, but the NIES V02.21 XH_2O product, after public release, can already be useful for water cycle studies

    Cis-cis and trans-perp HOONO: Action spectroscopy and isomerization kinetics

    Get PDF
    The weakly bound HOONO product of the OH + NO_2 + M reaction is studied using the vibrational predissociation that follows excitation of the first OH overtone (2nu1). We observe formation of both cis-cis and trans-perp conformers of HOONO. The trans-perp HOONO 2nu1 band is observed under thermal (223–238 K) conditions at 6971 cm^(–1). We assign the previously published (warmer temperature) HOONO spectrum to the 2nu1 band at 6365 cm^(–1) and 2nu1-containing combination bands of the cis-cis conformer of HOONO. The band shape of the trans-perp HOONO spectrum is in excellent agreement with the predicted rotational contour based on previous experimental and theoretical results, but the apparent origin of the cis-cis HOONO spectrum at 6365 cm^(–1) is featureless and significantly broader, suggesting more rapid intramolecular vibrational redistribution or predissociation in the latter isomer. The thermally less stable trans-perp HOONO isomerizes rapidly to cis-cis HOONO with an experimentally determined lifetime of 39 ms at 233 K at 13 hPa (in a buffer gas of predominantly Ar). The temperature dependence of the trans-perp HOONO lifetime in the range 223–238 K yields an isomerization barrier of 33±12 kJ/mol. New ab initio calculations of the structure and vibrational mode frequencies of the transition state perp-perp HOONO are performed using the coupled cluster singles and doubles with perturbative triples [CCSD(T)] model, using a correlation consistent polarized triple zeta basis set (cc-pVTZ). The energetics of cis-cis, trans-perp, and perp-perp HOONO are also calculated at this level [CCSD(T)/cc-pVTZ] and with a quadruple zeta basis set using the structure determined at the triple zeta basis set [CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ]. These calculations predict that the anti form of perp-perp HOONO has an energy of DeltaE0 = 42.4 kJ/mol above trans-perp HOONO, corresponding to an activation enthalpy of DeltaH298[double-dagger]0 = 41.1 kJ/mol. These results are in good agreement with statistical simulations based on a model developed by Golden, Barker, and Lohr. The simulated isomerization rates match the observed decay rates when modeled with a trans-perp to cis-cis HOONO isomerization barrier of 40.8 kJ/mol and a strong collision model. The quantum yield of cis-cis HOONO dissociation to OH and NO2 is also calculated as a function of photon excitation energy in the range 3500–7500 cm^(–1), assuming D0 = 83 kJ/mol. The quantum yield is predicted to vary from 0.15 to 1 over the observed spectrum at 298 K, leading to band intensities in the action spectrum that are highly temperature dependent; however, the observed relative band strengths in the cis-cis HOONO spectrum do not change substantially with temperature over the range 193–273 K. Semiempirical calculations of the oscillator strengths for 2nu1(cis-cis HOONO) and 2nu1(trans-perp HOONO) are performed using (1) a one-dimensional anharmonic model and (2) a Morse oscillator model for the OH stretch, and ab initio dipole moment functions calculated using Becke, Lee, Yang, and Parr density functional theory (B3LYP), Møller-Plesset pertubation theory truncated at the second and third order (MP2 and MP3), and quadratic configuration interaction theory using single and double excitations (QCISD). The QCISD level calculated ratio of 2nu1 oscillator strengths of trans-perp to cis-cis HOONO is 3.7:1. The observed intensities indicate that the concentration of trans-perp HOONO early in the OH + NO2 reaction is significantly greater than predicted by a Boltzmann distribution, consistent with statistical predictions of high initial yields of trans-perp HOONO from the OH + NO_2 + M reaction. In the atmosphere, trans-perp HOONO will isomerize nearly instantaneously to cis-cis HOONO. Loss of HOONO via photodissociation in the near-IR limits the lifetime of cis-cis HOONO during daylight to less than 45 h, other loss mechanisms will reduce the lifetime further

    Improvement of the retrieval algorithm for GOSAT SWIR XCO_2 and XCH_4 and their validation using TCCON data

    Get PDF
    The column-averaged dry-air mole fractions of carbon dioxide and methane (XCO_2 and XCH_4) have been retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations and released as a SWIR L2 product from the National Institute for Environmental Studies (NIES). XCO_2 and XCH_4 retrieved using the version 01.xx retrieval algorithm showed large negative biases and standard deviations (−8.85 and 4.75 ppm for XCO_2 and −20.4 and 18.9 ppb for XCH_4, respectively) compared with data of the Total Carbon Column Observing Network (TCCON). Multiple reasons for these error characteristics (e.g., solar irradiance database, handling of aerosol scattering) are identified and corrected in a revised version of the retrieval algorithm (version 02.xx). The improved retrieval algorithm shows much smaller biases and standard deviations (−1.48 and 2.09 ppm for XCO_2 and −5.9 and 12.6 ppb for XCH_4, respectively) than the version 01.xx. Also, the number of post-screened measurements is increased, especially at northern mid- and high-latitudinal areas

    Intensity of the second and third OH overtones of H_2O_2, HNO_3, and HO_2NO_2

    Get PDF
    The 3ν_(OH) and 4ν_(OH) of H_2O_2, HNO_3, and HO_2NO_2 have been observed. The band strengths of 3ν_(OH) are (7.0±1.8) × 10^(−20), (2.9±0.7) × 10^(−20), and (3.8±1.1) × 10^(−20) cm^2 molecules^(−1) cm^(−1) for H_2O_2, HNO_3, and HO_2NO_2, respectively. Those of 4ν_(OH) are (4.5± .6) × 10^(−21), (2.8± .0) × 10^(−21), and (3.0±1.8) × 10^(−21) cm^2 molecules^(−1) cm^(−1) for H_2O_2, HNO_3, and HO_2NO_2, respectively. The uncertainty is for one standard deviation. Assuming excitation of these modes by solar absorption is dissociative for HO_2NO_2, these measurements confirm that this process will play a small role in the atmospheric photochemistry of the lower stratosphere

    The Orbiting Carbon Observatory-2: first 18 months of science data products

    Get PDF
    The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO_2) with the accuracy, resolution, and coverage needed to quantify CO_2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO_2 dry air mole fraction, X_(CO)_2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of X_(CO)_2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes X_(CO)_2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south X_(CO)_2 gradient is small. Enhanced X_(CO)_2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south X_(CO)_2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in X_(CO)_2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO_2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart X_(CO)_2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset

    The Orbiting Carbon Observatory-2: first 18 months of science data products

    Get PDF
    The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO_2) with the accuracy, resolution, and coverage needed to quantify CO_2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO_2 dry air mole fraction, X_(CO)_2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of X_(CO)_2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes X_(CO)_2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south X_(CO)_2 gradient is small. Enhanced X_(CO)_2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south X_(CO)_2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in X_(CO)_2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO_2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart X_(CO)_2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset
    • …
    corecore