22 research outputs found

    Analysis of SARS-CoV-2 Emergent Variants Following AZD7442 (Tixagevimab/Cilgavimab) for Early Outpatient Treatment of COVID-19 (TACKLE Trial)

    Get PDF
    Introduction: AZD7442 (tixagevimab/cilgavimab) comprises neutralising monoclonal antibodies (mAbs) that bind to distinct non-overlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Viral evolution during mAb therapy can select for variants with reduced neutralisation susceptibility. We examined treatment-emergent SARS-CoV-2 variants during TACKLE (NCT04723394), a phase 3 study of AZD7442 for early outpatient treatment of coronavirus disease 2019 (COVID-19). // Methods: Non-hospitalised adults with mild-to-moderate COVID-19 were randomised and dosed ≤ 7 days from symptom onset with AZD7442 (n = 452) or placebo (n = 451). Next-generation sequencing of the spike gene was performed on SARS-CoV-2 reverse-transcription polymerase chain reaction-positive nasopharyngeal swabs at baseline and study days 3, 6, and 15 post dosing. SARS-CoV-2 lineages were assigned using spike nucleotide sequences. Amino acid substitutions were analysed at allele fractions (AF; % of sequence reads represented by substitution) ≥ 25% and 3% to 25%. In vitro susceptibility to tixagevimab, cilgavimab, and AZD7442 was evaluated for all identified treatment-emergent variants using a pseudotyped microneutralisation assay. // Results: Longitudinal spike sequences were available for 461 participants (AZD7442, n = 235; placebo, n = 226) and showed that treatment-emergent variants at any time were rare, with 5 (2.1%) AZD7442 participants presenting ≥ 1 substitution in tixagevimab/cilgavimab binding sites at AF ≥ 25%. At AF 3% to 25%, treatment-emergent variants were observed in 15 (6.4%) AZD7442 and 12 (5.3%) placebo participants. All treatment-emergent variants showed in vitro susceptibility to AZD7442. // Conclusion: These data indicate that AZD7442 creates a high genetic barrier for resistance and is a feasible option for COVID-19 treatment

    Fc-mediated functions of nirsevimab complement direct respiratory syncytial virus neutralization but are not required for optimal prophylactic protection

    Get PDF
    IntroductionNirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection.MethodsNirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc Îł receptors (FcÎłRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV.ResultsNirsevimab and MEDI8897* exhibited binding to a range of FcÎłRs, with expected reductions in FcÎłR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model.ConclusionNirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Analysis of SARS-CoV-2 Emergent Variants Following AZD7442 (Tixagevimab/Cilgavimab) for Early Outpatient Treatment of COVID-19 (TACKLE Trial)

    No full text
    Abstract Introduction AZD7442 (tixagevimab/cilgavimab) comprises neutralising monoclonal antibodies (mAbs) that bind to distinct non-overlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Viral evolution during mAb therapy can select for variants with reduced neutralisation susceptibility. We examined treatment-emergent SARS-CoV-2 variants during TACKLE (NCT04723394), a phase 3 study of AZD7442 for early outpatient treatment of coronavirus disease 2019 (COVID-19). Methods Non-hospitalised adults with mild-to-moderate COVID-19 were randomised and dosed ≤ 7 days from symptom onset with AZD7442 (n = 452) or placebo (n = 451). Next-generation sequencing of the spike gene was performed on SARS-CoV-2 reverse-transcription polymerase chain reaction-positive nasopharyngeal swabs at baseline and study days 3, 6, and 15 post dosing. SARS-CoV-2 lineages were assigned using spike nucleotide sequences. Amino acid substitutions were analysed at allele fractions (AF; % of sequence reads represented by substitution) ≥ 25% and 3% to 25%. In vitro susceptibility to tixagevimab, cilgavimab, and AZD7442 was evaluated for all identified treatment-emergent variants using a pseudotyped microneutralisation assay. Results Longitudinal spike sequences were available for 461 participants (AZD7442, n = 235; placebo, n = 226) and showed that treatment-emergent variants at any time were rare, with 5 (2.1%) AZD7442 participants presenting ≥ 1 substitution in tixagevimab/cilgavimab binding sites at AF ≥ 25%. At AF 3% to 25%, treatment-emergent variants were observed in 15 (6.4%) AZD7442 and 12 (5.3%) placebo participants. All treatment-emergent variants showed in vitro susceptibility to AZD7442. Conclusion These data indicate that AZD7442 creates a high genetic barrier for resistance and is a feasible option for COVID-19 treatment

    The OMERACT core domain set for clinical trials of shoulder disorders

    Get PDF
    Objective. To reach consensus on the core domains to be included in a core domain set for clinical trials of shoulder disorders using the Outcome Measures in Rheumatology (OMERACT) Filter 2.1 Core Domain Set process. Methods. At OMERACT 2018, the OMERACT Shoulder Working Group conducted a workshop that presented the OMERACT 2016 preliminary core domain set and its rationale based upon a systematic review of domains measured in shoulder trials and international Delphi sessions involving patients, clinicians, and researchers, as well as a new systematic review of qualitative studies on the experiences of people with shoulder disorders. After discussions in breakout groups, the OMERACT core domain set for clinical trials of shoulder disorders was presented for endorsement by OMERACT 2018 participants. Results. The qualitative review (n = 8) identified all domains included in the preliminary core set. An additional domain, cognitive dysfunction, was also identified, but confidence that this represents a core domain was very low. The core domain set that was endorsed by the OMERACT participants, with 71% agreement, includes 4 “mandatory” trial domains: pain, function, patient global — shoulder, and adverse events including death; and 4 “important but optional” domains: participation (recreation/work), sleep, emotional well-being, and condition-specific pathophysiological manifestations. Cognitive dysfunction was voted out of the core domain set. Conclusion. OMERACT 2018 delegates endorsed a core domain set for clinical trials of shoulder disorders. The next step includes identification of a core outcome measurement set that passes the OMERACT 2.1 Filter for measuring each domain

    Effect of cardiometabolic risk factors on the relationship between adiposity and bone mass in girls

    No full text
    Background/objective Childhood obesity has been separately associated with cardiometabolic risk factors (CMRs) and increased risk of fracture. However, both augmented and compromised bone mass have been reported among overweight/obese children. Metabolic dysfunction, often co-existing with obesity, may explain the discrepancy in previous studies. The aim of this study was to examine whether the relationship between adiposity and dual-energy X-ray absorptiometry (DXA) derived bone mass differed in young girls with and without CMR(s). Subjects/methods Whole-body bone and body composition measures by DXA and measures of CMR (fasting glucose, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic and diastolic blood pressure, waist circumference (WC)) were obtained from 307, 9-to 12-year-old girls. Girls with 1 or >= 2 CMR(s) were considered to be at risk (vs. no CMR). Multiple linear regression was used to test the relationship of total fat mass with total body bone mineral content (BMC) after controlling for height, lean mass, CMR risk, and other potential confounders. Results There was a significant interaction between CMR risk and total body fat mass. When girls were stratified by CMR group, all groups had a significant positive relationship between fat mass and BMC (p = 2 CMRs had a lower BMC for a given level of body fat. Total body fat was not significantly related to bone mineral density (p > 0.05). Conclusion Fat mass has a positive relationship with BMC even after controlling for lean mass. However, the positive relationship of fat mass with BMC may be attenuated if multiple CMRs are present.US National Institute of Health [R01 HD-074565]6 month embargo; published online: 11 June 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore