22 research outputs found

    Giant microwave-induced BB-periodic magnetoresistance oscillations in a two-dimensional electron gas with a bridged-gate tunnel point contact

    Full text link
    We have studied the magnetoresistance of the quantum point contact fabricated on the high mobility two-dimensional electron gas (2DEG) exposed to microwave irradiation. The resistance reveals giant BB-periodic oscillations with the relative amplitude ΔR/R\Delta R/R of up to 700700\% resulting from the propagation and interference of the edge magnetoplasmons (EMPs) in the sample. This giant photoconductance is attributed to the considerably large local electron density modulation in the vicinity of the point contact. We have also analyzed the oscillation periods ΔB\Delta B of the resistance oscillations and, comparing the data with the EMP theory, extracted the EMP interference length LL. We have found that the length LL substantially exceeds the distance between the contact leads but rather corresponds to the distance between metallic contact pads measured along the edge of the 2DEG. This resolves existing controversy in the literature and should help to properly design highly sensitive microwave and terahertz spectrometers based on the discussed effect.Comment: 5 pages, 5 figure

    Highly superlinear giant terahertz photoconductance in GaAs quantum point contacts in the deep tunneling regime

    Get PDF
    A highly superlinear in radiation intensity photoconductance induced by continuous wave terahertz laser radiation with low intensities has been observed in quantum point contacts made of GaAs quantum wells operating in the deep tunneling regime. For very low values of the normalized dark conductance Gdark/G0≈10−6, with the conductance quantum G0=2e2/h, the photoconductance scales exponentially with the radiation intensity, so that already at 100mW/cm2, it increases by almost four orders of magnitude. This effect is observed for a radiation electric field oriented along the source drain direction. We provide model considerations of the effect and attribute it to the variation of the tunneling barrier height by the radiation field made possible by local diffraction effects. We also demonstrate that cyclotron resonance due to an external magnetic field manifests itself in the photoconductance, completely suppressing the photoresponse

    Giant Terahertz Photoconductance of Quantum Point Contacts in the Tunneling Regime

    Get PDF
    We report on the observation of the giant photoconductance of a quantum point contact (QPC) in the tunneling regime excited by terahertz radiation. Studied QPCs are formed in a GaAs/(Al, Ga) As heterostructure with a high-electron-mobility two-dimensional electron gas. We demonstrate that irradiation of strongly negatively biased QPCs by laser radiation with frequency f = 0.69 THz and intensity 50mW/cm(2) results in two orders of magnitude enhancement of the QPC conductance. The effect increases with the dark conductivity decrease. It is also characterized by a strong polarization dependence and a drastic reduction of the signal by increasing the radiation frequency to 1.63 THz. We demonstrate that all experimental findings can be well explained by the photon-assisted tunneling through the QPC. Corresponding calculations are in good agreement with the experiment

    Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

    No full text
    The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9–30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon–phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations

    Spectral and luminescent properties of ZnO–SiO2 core–shell nanoparticles with size-selected ZnO cores

    Get PDF
    Deposition of silica shells onto ZnO nanoparticles (NPs) in dimethyl sulfoxide was found to be an efficient tool for terminating the growth of ZnO NPs during thermal treatment and producing stable core–shell ZnO NPs with core sizes of 3.5–5.8 nm. The core–shell ZnO–SiO2 NPs emit two photoluminescence (PL) bands centred at [similar]370 and [similar]550 nm originating from the direct radiative electron–hole recombination and defect-mediated electron–hole recombination, respectively. An increase of the ZnO NP size from 3.5 to 5.8 nm is accompanied by a decrease of the intensity of the defect PL band and growth of its radiative life-time from 0.78 to 1.49 μs. FTIR spectroscopy reveals no size dependence of the FTIR-active spectral features of ZnO–SiO2 NPs in the ZnO core size range of 3.5–5.8 nm, while in the Raman spectra a shift of the LO frequency from 577 cm−1 for the 3.5 nm ZnO core to 573 cm−1 for the 5.8 nm core is observed, which can indicate a larger compressive stress in smaller ZnO cores induced by the SiO2 shell. Simultaneous hydrolysis of zinc(II) acetate and tetraethyl orthosilicate also results in the formation of ZnO–SiO2 NPs with the ZnO core size varying from 3.1 to 3.8 nm. However, unlike the case of the SiO2 shell deposition onto the pre-formed ZnO NPs, individual core–shell NPs are not formed but loosely aggregated constellations of ZnO–SiO2 NPs with a size of 20–30 nm are. The variation of the synthetic procedures in the latter method proposed here allows the size of both the ZnO core and SiO2 host particles to be tuned.Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

    No full text
    We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density

    Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

    No full text
    Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA) for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated
    corecore