113 research outputs found

    Characterizing the APEC pathotype

    Get PDF
    The purpose of this study was to compare avian pathogenic (APEC) isolates to fecal isolates of apparently healthy poultry (avian fecal or AFEC) by their possession of various traits in order to ascertain whether APEC and AFEC are distinct and if the APEC strains constitute a distinct pathotype. Four hundred and fifty-one APEC and one hundred and four AFEC isolates were examined for possession of traits associated with the virulence of human extraintestinal pathogenic (ExPEC) as well as APEC. Several of the genes occurred in the majority of APEC and only infrequently in AFEC, including ,, ,, , , , and. Of these genes, several have been found on large plasmids in APEC. Other genes occurred in significantly more APEC than AFEC but did not occur in the majority of APEC. Isolates were also evaluated by serogroup, lactose utilization, and hemolytic reaction. Twenty-nine and a half percent of the APEC and forty-two and three tenths percent of the AFEC were not serogrouped because they were not typeable with standard antisera, typed to multiple serogroups, were rough, autoagglutinated, or were not done. Around 65% of the typeable APEC (205 isolates) and AFEC (41 isolates) were classified into shared serogroups, and about a third of both fell into APEC- (113 isolates) or AFEC- (19 isolates) unique serogroups. Most were able to use lactose. No isolate was hemolytic. Overall, the majority of the APEC isolates surveyed shared a common set of putative virulence genes, many of which have been localized to an APEC plasmid known as pTJ100. This common set of genes may prove useful in defining an APEC pathotype

    Prevalence of Avian-Pathogenic Escherichia coli Strain O1 Genomic Islands among Extraintestinal and Commensal E. coli Isolates

    Get PDF
    Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types

    Escherichia coli-mediated impairment of ureteric contractility is uropathogenic E. coli specific.

    Get PDF
    BACKGROUND: Ureters are fundamental for keeping kidneys free from uropathogenic Escherichia coli (UPEC), but we have shown that 2 strains (J96 and 536) can subvert this role and reduce ureteric contractility. To determine whether this is (1) a widespread feature of UPEC, (2) exhibited only by UPEC, and (3) dependent upon type 1 fimbriae, we analyzed strains representing epidemiologically important multilocus sequence types ST131, ST73, and ST95 and non-UPEC E. coli. METHODS: Contractility and calcium transients in intact rat ureters were compared between strains. Mannose and fim mutants were used to investigate the role of type 1 fimbriae. RESULTS: Non-UPEC had no significant effect on contractility, with a mean decrease after 8 hours of 8.8%, compared with 8.8% in controls. UPEC effects on contractility were strain specific, with decreases from 9.47% to 96.7%. Mannose inhibited the effects of the most potent strains (CFT073 and UTI89) but had variable effects among other UPEC strains. Mutation and complementation studies showed that the effects of the UTI89 cystitis isolate were fimH dependent. CONCLUSIONS: We find that (1) non-UPEC do not affect ureteric contractility, (2) impairment of contractility is a common feature of UPEC, and (3) the mechanism varies between strains, but for the most potent UPEC type 1 fimbriae are involved

    Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan

    Get PDF
    A total of 318 Escherichia coli isolates obtained from different food-producing animals affected with colibacillosis between 2001 and 2006 were subjected to phylogenetic analysis: 72 bovine isolates, 89 poultry isolates and 157 porcine isolates. Overall, the phylogenetic group A was predominant in isolates from cattle (36/72, 50%) and pigs (101/157, 64.3%) whereas groups A (44/89, 49.4%) and D (40/89, 44.9%) were predominant in isolates from poultry. In addition, group B2 was not found among diseased food-producing animals except for a poultry isolate. Thus, the phylogenetic group distribution of E. coli from diseased animals was different by animal species. Among the 318 isolates, cefazolin resistance (minimum inhibitory concentrations: ≥32 μg/ml) was found in six bovine isolates, 29 poultry isolates and three porcine isolates. Of them, 11 isolates (nine from poultry and two from cattle) produced extended spectrum β-lactamase (ESBL). The two bovine isolates produced blaCTX-M-2, while the nine poultry isolates produced blaCTX-M-25 (4), blaSHV-2 (3), blaCTX-M-15 (1) and blaCTX-M-2 (1). Thus, our results showed that several types of ESBL were identified and three types of β-lactamase (SHV-2, CTX-M-25 and CTX-M-15) were observed for the first time in E. coli from diseased animals in Japan
    corecore