17,047 research outputs found
Assessment of the worthwhileness of efficient driving in railway systems with high-receptivity power supplies
Eco-driving is one of the most important strategies for significantly reducing the energy consumption of railways with low investments. It consists of designing a way of driving a train to fulfil a target running time, consuming the minimum amount of energy. Most eco-driving energy savings come from the substitution of some braking periods with coasting periods. Nowadays, modern trains can use regenerative braking to recover the kinetic energy during deceleration phases. Therefore, if the receptivity of the railway system to regenerate energy is high, a question arises: is it worth designing eco-driving speed profiles? This paper assesses the energy benefits that eco-driving can provide in different scenarios to answer this question. Eco-driving is obtained by means of a multi-objective particle swarm optimization algorithm, combined with a detailed train simulator, to obtain realistic results. Eco-driving speed profiles are compared with a standard driving that performs the same running time. Real data from Spanish high-speed lines have been used to analyze the results in two case studies. Stretches fed by 1 × 25 kV and 2 × 25 kV AC power supply systems have been considered, as they present high receptivity to regenerate energy. Furthermore, the variations of the two most important factors that affect the regenerative energy usage have been studied: train motors efficiency ratio and catenary resistance. Results indicate that the greater the catenary resistance, the more advantageous eco-driving is. Similarly, the lower the motor efficiency, the greater the energy savings provided by efficient driving. Despite the differences observed in energy savings, the main conclusion is that eco-driving always provides significant energy savings, even in the case of the most receptive power supply network. Therefore, this paper has demonstrated that efforts in improving regenerated energy usage must not neglect the role of eco-driving in railway efficiency
Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier
The elastic and alpha-production channels for the 6He+208Pb reaction are
investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22,
and 27 MeV). The effect of the two-neutron transfer channels on the elastic
scattering has been studied within the Coupled-Reaction-Channels (CRC) method.
We find that the explicit inclusion of these channels allows a simultaneous
description of the elastic data and the inclusive alpha cross sections at
backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC)
calculations are found to reproduce the elastic data, but not the
transfer/breakup data. The trivially-equivalent local polarization potential
(TELP) derived from the CRC and CDCC calculations are found to explain the
features found in previous phenomenological optical model calculations for this
system.Comment: 7 pages, 6 figures (replaced with updated version
A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates
This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates
A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates
This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates
Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays
Chiral properties of the two phases - collinear motif (below Morin transition
temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered
hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray
Bragg diffraction, using circular polarized incident x-rays tuned near the iron
K-edge. Magneto-electric multipoles, including an anapole, fully characterize
the high-temperature canted phase, whereas the low-temperature collinear phase
supports both parity-odd and parity-even multipoles that are time-odd. Orbital
angular momentum accompanies the collinear motif, while it is conspicuously
absent with the canted motif. Intensities have been successfully confronted
with analytic expressions derived from an atomic model fully compliant with
chemical and magnetic structures. Values of Fe atomic multipoles previously
derived from independent experimental data, are shown to be completely
trustworthy
- …