11,639 research outputs found

    The far-IR spectrum of Sagittarius B2 region: Extended molecular absorption, photodissociation and photoionization

    Full text link
    We present large scale 9'x 27'(25 pc x 70 pc) far-IR observations around Sgr B2 using the Long-wavelength spectrometer (LWS) on board the Infrared Space Observatory (ISO). The spectra are dominated by the strong continuum emission of dust, the widespread molecular absorption of light hydrides (OH, CH and H2O) and the fine structure lines of [NII], [NIII], [OIII], [CII] and [OI]. The molecular richness in the outer layers of Sgr B2 is probed by the ISO-LWS Fabry-Perot (35 km s^-1) detections towards Sgr B2(M), where more that 70 lines from 15 molecular and atomic species are observed at high signal to noise ratio.Comment: 46 pages, 10 figures, 5 tables, accepted in ApJ part I. (Figs. 1, 2, 3, 9 and 10 have been bitmapped to low resolution

    The largest oxigen bearing organic molecule repository

    Full text link
    We present the first detection of complex aldehydes and isomers in three typical molecular clouds located within 200pc of the center of our Galaxy. We find very large abundances of these complex organic molecules (COMs) in the central molecular zone (CMZ), which we attribute to the ejection of COMs from grain mantles by shocks. The relative abundances of the different COMs with respect to that of CH3OH are strikingly similar for the three sources, located in very different environments in the CMZ. The similar relative abundances point toward a unique grain mantle composition in the CMZ. Studying the Galactic center clouds and objects in the Galactic disk having large abundances of COMs, we find that more saturated molecules are more abundant than the non-saturated ones. We also find differences between the relative abundance between COMs in the CMZ and the Galactic disk, suggesting different chemical histories of the grain mantles between the two regions in the Galaxy for the complex aldehydes. Different possibilities for the grain chemistry on the icy mantles in the GC clouds are briefly discussed. Cosmic rays can play an important role in the grain chemistry. With these new detections, the molecular clouds in the Galactic center appear to be one of the best laboratories for studying the formation of COMs in the Galaxy.Comment: 20 pages, 4 figures, accepted in Ap
    corecore