8 research outputs found

    Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    Glycogen storage disease type Ia: Current management options, burden and unmet needs

    No full text
    Glycogen storage disease type Ia (GSDIa) is caused by defective glucose-6-phosphatase, a key enzyme in carbohydrate metabolism. Affected individuals cannot release glucose during fasting and accumulate excess glycogen and fat in the liver and kidney, putting them at risk of severe hypoglycaemia and secondary metabolic perturbations. Good glycaemic/metabolic control through strict dietary treatment and regular doses of uncooked cornstarch (UCCS) is essential for preventing hypoglycaemia and long-term complications. Dietary treatment has improved the prognosis for patients with GSDIa; however, the disease itself, its management and monitoring have significant physical, psychological and psychosocial burden on individuals and parents/caregivers. Hypoglycaemia risk persists if a single dose of UCCS is delayed/missed or in cases of gastrointestinal intolerance. UCCS therapy is imprecise, does not treat the cause of disease, may trigger secondary metabolic manifestations and may not prevent long-term complications. We review the importance of and challenges associated with achieving good glycaemic/metabolic control in individuals with GSDIa and how this should be balanced with age-specific psychosocial development towards independence, management of anxiety and preservation of quality of life (QoL). The unmet need for treatment strategies that address the cause of disease, restore glucose homeostasis, reduce the risk of hypoglycaemia/secondary metabolic perturbations and improve QoL is also discussed

    Human KCNQ5 de novo Mutations Underlie Epilepsy and Intellectual Disability

    No full text
    We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID) and/or epilepsy by whole-exome sequencing. These variants comprised of two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman, et al., 2017). Surprisingly, all eight missense variants resulted in gain-of-function (GOF) due to hyperpolarized voltage-dependence of activation or slowed deactivation kinetics, while the two nonsense variants were confirmed to be loss-of-function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: Milder presentations with LOF or smaller GOF shifts in voltage-dependence (DV50= ~-15 mV), and severe presentations with larger GOF shifts in voltage-dependence (DV50= ~-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created using CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures, and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy

    Biodiversity recovery of Neotropical secondary forests

    No full text
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    No full text
    corecore