43,429 research outputs found

    Drift velocity of electrons in silicon at high electric fields from 4.2Ā° to 300Ā°K

    Get PDF
    The drift velocity of electrons in silicon at high electric fields is measured in the direction over the range of lattice temperatures from 4.2Ā° to 300Ā°K. It is established that in this range a limiting drift velocity exists. Its temperature dependence is measured. The samples used and the method of measurement are briefly described

    Differential Step Response of Unipolar Space-Charge-Limited Current in Solids

    Get PDF
    The small signal step response of unipolar spaceā€chargeā€limited current in solids is analyzed for planar structures and for media in which the drift velocity of the charge carriers is either proportional to the electric field (thermal charge carriers) or is independent of the electric field (hot charge carriers). Results are reported in analytical and graphical form. Their features are discussed in terms of the underlying physical phenomena, as well as in the perspective of experimental applications. Cylindrical and spherical structures are not accessible to closedā€form solutions by the approach

    The stellar-subhalo mass relation of satellite galaxies

    Full text link
    We extend the abundance matching technique (AMT) to infer the satellite-subhalo and central-halo mass relations (MRs) of galaxies, as well as the corresponding satellite conditional mass functions (CMFs). We use the observed galaxy stellar mass function (GSMF) decomposed into centrals and satellites and the LCDM halo/subhalo mass functions as inputs. We explore the effects of defining the subhalo mass at the time of accretion (m_acc) vs. at the time of observation (m_obs). We test the standard assumption that centrals and satellites follow the same MRs, showing that this assumption leads to predictions in disagreement with observations, specially for m_obs. Instead, when the satellite-subhalo MRs are constrained following our AMT, they are always different from the central-halo MR: the smaller the stellar mass (Ms), the less massive is the subhalo of satellites as compared to the halo of centrals of the same Ms. On average, for Ms<2x10^11Msol, the dark mass of satellites decreased by 60-65% with respect to their masses at accretion time. The resulting MRs for both definitions of subhalo mass yield satellite CMFs in agreement with observations. Also, when these MRs are used in a HOD model, the predicted correlation functions agree with observations. We show that the use of m_obs leads to less uncertain MRs than m_acc, and discuss implications of the obtained satellite-subhalo MR. For example, we show that the tension between abundance and dynamics of MW satellites in LCDM gives if the slope of the GSMF faint-end slope upturns to -1.6.Comment: 13, pages, 4 figures. Accepted for publication in ApJ. Minor changes to previous versio

    Zero-energy peak of the density of states and localization properties of a one-dimensional Frenkel exciton: Off-diagonal disorder

    Get PDF
    We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder, focusing our attention on the physical nature of the zero-energy peak of the density of states. The character of excitonic states (localized or delocalized) is also examined in the vicinity of this peak. It is shown that the state being responsible for the peak is localized. A detailed comparison of the nearest-neighbor approach with the long-range dipole-dipole coupling is performed.Comment: 15 pages with 7 figures (REVTeX). To appear in Physical Review

    Electromechanical Imaging of Biological Systems with Sub-10 nm Resolution

    Get PDF
    Electromechanical imaging of tooth dentin and enamel has been performed with sub-10 nm resolution using piezoresponse force microscopy. Characteristic piezoelectric domain size and local protein fiber ordering in dentin have been determined. The shape of a single collagen fibril in enamel is visualized in real space and local hysteresis loops are measured. Because of the ubiquitous presence of piezoelectricity in biological systems, this approach is expected to find broad application in high-resolution studies of a wide range of biomaterials.Comment: 12 pages, 4 figures, submitted for publication in Appl. Phys. Let
    • ā€¦
    corecore