6 research outputs found

    Freeze-thaw durability of recycled concrete from construction and demolition wastes

    Get PDF
    Road engineering is one of the most accepted applications for concrete including recycled aggregates from construction and demolition wastes as a partial replacement of the natural coarse aggregates. Amongst the durability concerns of such application, the deterioration due to freeze-thaw cycles is one of the most important causes decreasing the life span of concrete in countries with a continental climate. Moreover, the use of de-icing salts, which is a common practice to prevent ice formation on roadways and walkways, increases the superficial degradation of concrete due to frost-salt scaling. Thus, this paper aims to assess the resistance to frost salt with de-icing salts of two recycled concrete mixtures containing a 50% replacement of the conventional gravel by recycled aggregates both of mixed and ceramic nature, i.e. containing ceramic percentages of 34% and 100%, in comparison to a conventional concrete made with siliceous gravel. Therefore, the surface scaling was evaluated based on EN 1339 (2004) on 28 days cured cylinders, exposed to 7, 14, 21 and 28 freeze-thaw cycles in the presence of sodium chloride solution. Given that no airentraining admixture was used in any of the mixtures, the scaling of both conventional and recycled concretes exceeded the 1 kg/m2 limit established by the European standard. Nonetheless, for the casting surface, the recycled concrete with low ceramic content exhibited a similar behaviour to the conventional concrete, whereas the performance of the recycled concrete with high ceramic content was better. However, as expected, trowelled surfaces showed a worse performance and both recycled concretes had a lower freeze-thaw durability than the conventional mixture. In any case, the results suggested that the composition of the recycled aggregates could be used as a factor to limit the differences in performance between recycled and conventional mixtures

    Improving the quality of various types of recycled aggregates by biodesposition

    Get PDF
    Demand for construction materials has been rising in recent decades in many countries around the world, placing a heavy burden on the environment in terms of both the natural resources consumed and the enormous flow of waste generated. In order to obtain a more sustainable construction, it is often suggested to reintroduce the industry’s own waste as input for the manufacture of new materials. In this study, the use of construction and demolition waste of concrete or mixed concrete/ceramic nature is investigated as a replacement of natural aggregates in concrete. The greater affinity of recycled aggregates for water directly affects the workability and/or the concrete strength and durability. One possible solution to reduce the aggregates water absorption is to apply a biogenic treatment with calcium carbonate-precipitating bacteria that consolidate the aggregate surface or the adhering mortar. Experimental results show that the biodeposition treatment reduced the recycled aggregate water absorption by generating precipitation in the pores and an impermeable outer layer, most effectively on the roughest particle surfaces. The largest decrease happened in the aggregates with the highest porosity. The biogenic layer had a good cohesion with the aggregates. The results of sonication indicated that the most effective treatment was on recycled concrete aggregates (RCA) instead of mixed aggregates (MA). Therefore, the treated RCA was used to make concrete for further investigation. The concrete made with bio-treated RCA had a denser structure, a decreased water absorption (around 1%) and an improved compressive strength (25%)
    corecore