103,415 research outputs found
Offensive alliances in cubic graphs
An offensive alliance in a graph is a set of vertices
where for every vertex in its boundary it holds that the
majority of vertices in 's closed neighborhood are in . In the case of
strong offensive alliance, strict majority is required. An alliance is
called global if it affects every vertex in , that is, is a
dominating set of . The global offensive alliance number
(respectively, global strong offensive alliance number
) is the minimum cardinality of a global offensive
(respectively, global strong offensive) alliance in . If has
global independent offensive alliances, then the \emph{global independent
offensive alliance number} is the minimum cardinality among
all independent global offensive alliances of . In this paper we study
mathematical properties of the global (strong) alliance number of cubic graphs.
For instance, we show that for all connected cubic graph of order ,
where
denotes the line graph of . All the above bounds are tight
Topological defects and misfit strain in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy
Stripe domains are studied in perpendicular magnetic anisotropy films
nanostructured with a periodic thickness modulation that induces the lateral
modulation of both stripe periods and inplane magnetization. The resulting
system is the 2D equivalent of a strained superlattice with properties
controlled by interfacial misfit strain within the magnetic stripe structure
and shape anisotropy. This allows us to observe, experimentally for the first
time, the continuous structural transformation of a grain boundary in this 2D
magnetic crystal in the whole angular range. The magnetization reversal process
can be tailored through the effect of misfit strain due to the coupling between
disclinations in the magnetic stripe pattern and domain walls in the in-plane
magnetization configuration
Long-Range Order of Vortex Lattices Pinned by Point Defects in Layered Superconductors
How the vortex lattice orders at long range in a layered superconductor with
weak point pinning centers is studied through a duality analysis of the
corresponding frustrated XY model. Vortex-glass order emerges out of the vortex
liquid across a macroscopic number of weakly coupled layers in perpendicular
magnetic field as the system cools down. Further, the naive magnetic-field
scale determined by the Josephson coupling between adjacent layers is found to
serve as an upperbound for the stability of any possible conventional vortex
lattice phase at low temperature in the extreme type-II limit.Comment: 13 pgs., 1 table, published versio
Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions
Magnetic lateral multilayers have been fabricated on weak perpendicular
magnetic anisotropy amorphous Nd-Co films in order to perform a systematic
study on the conditions for controlled nucleation of topological defects within
their magnetic stripe domain pattern. A lateral thickness modulation of period
is defined on the nanostructured samples that, in turn, induces a lateral
modulation of both magnetic stripe domain periods and average
in-plane magnetization component . Depending on lateral multilayer
period and in-plane applied field, thin and thick regions switch independently
during in-plane magnetization reversal and domain walls are created within the
in-plane magnetization configuration coupled to variable angle grain boundaries
and disclinations within the magnetic stripe domain patterns. This process is
mainly driven by the competition between rotatable anisotropy (that couples the
magnetic stripe pattern to in-plane magnetization) and in-plane shape
anisotropy induced by the periodic thickness modulation. However, as the
structural period becomes comparable to magnetic stripe period ,
the nucleation of topological defects at the interfaces between thin and thick
regions is hindered by a size effect and stripe domains in the different
thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
- …
