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Abstract

Let Γ = (V, E) be a simple graph. For a nonempty set X ⊆ V , and a vertex v ∈ V , δX (v) denotes the number of neighbors
v has in X . A nonempty set S ⊆ V is a defensive k-alliance in Γ = (V, E) if δS(v) ≥ δS̄(v)+ k,∀v ∈ S. A defensive k-alliance
S is called global if it forms a dominating set. The global defensive k-alliance number of Γ , denoted by γ a

k (Γ ), is the minimum
cardinality of a defensive k-alliance in Γ . We study the mathematical properties of γ a

k (Γ ).
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Since (defensive, offensive and dual) alliances were first introduced by Kristiansen, Hedetniemi and Hedetniemi
[12], several authors have studied their mathematical properties [2,4,3,6,9,13,14,16,18,20,22] as well as the
complexity of computing minimum cardinality of alliances [1,7,10,11]. The minimum cardinality of a defensive
(respectively, offensive or dual) alliance in a graph Γ is called the defensive (respectively, offensive or dual) alliance
number of Γ . The mathematical properties of defensive alliances were first studied in [12] where several bounds on
the defensive alliance number were given. The particular case of global (strong) defensive alliances was investigated
in [9] where several bounds on the global (strong) defensive alliance number were obtained. The dual alliances were
introduced as powerful alliances in [2,3]. In [14] there were obtained several tight bounds on the defensive (offensive
and dual) alliance number. In particular, there was investigated the relationship between the alliance numbers of a
graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius. Moreover, the study of
global defensive (offensive and dual) alliances in a planar graph was initiated in [16] and the study of defensive
alliances in the line graph of a simple graph was initiated in [22]. The particular case of global alliances in trees has
been investigated in [4]. For many properties of offensive alliances, the readers may refer to [6,13,15,23].

A generalization of (defensive and offensive) alliances called k-alliances was presented by Shafique and Dutton
[18,19] where was initiated the study of k-alliance free sets and k-alliance cover sets. The aim of this work is to
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study mathematical properties of defensive k-alliances. We begin by stating the terminology used. Throughout this
article, Γ = (V, E) denotes a simple graph of order |V | = n and size |E | = m. We denote two adjacent vertices u
and v by u ∼ v. For a nonempty set X ⊆ V , and a vertex v ∈ V , NX (v) denotes the set of neighbors v has in X :
NX (v) := {u ∈ X : u ∼ v}, and the degree of v in X will be denoted by δX (v) = |NX (v)|. We denote the degree of
a vertex vi ∈ V by δ(vi ) (or by di for short) and the degree sequence of Γ by d1 ≥ d2 ≥ · · · ≥ dn . The subgraph
induced by S ⊂ V will be denoted by 〈S〉 and the complement of the set S in V will be denoted by S̄.

A nonempty set S ⊆ V is a defensive k-alliance in Γ = (V, E), k ∈ {−d1, . . . , d1}, if for every v ∈ S,

δS(v) ≥ δS̄(v)+ k. (1)

A vertex v ∈ S is said to be k-satisfied by the set S if (1) holds. Notice that (1) is equivalent to

δ(v) ≥ 2δS̄(v)+ k. (2)

A defensive (−1)-alliance is a defensive alliance and a defensive 0-alliance is a strong defensive alliance as defined
in [12]. A defensive 0-alliance is also known as a cohesive set [21].

The defensive k-alliance number of Γ , denoted by ak(Γ ), is defined as the minimum cardinality of a defensive
k-alliance in Γ . Notice that

ak+1(Γ ) ≥ ak(Γ ). (3)

The defensive (−1)-alliance number of Γ is known as the alliance number of Γ and the defensive 0-alliance
number is known as the strong alliance number, [12,8,9]. For instance, in the case of the 3-cube graph, Γ = Q3,
every set composed by two adjacent vertices is a defensive alliance of minimum cardinality and every set composed
by four vertices whose induced subgraph is isomorphic to the cycle C4 is a strong defensive alliance of minimum
cardinality. Thus, a−1(Q3) = 2 and a0(Q3) = 4.

For some graphs, there are some values of k ∈ {−d1, . . . , d1}, such that defensive k-alliances do not exist. For
instance, for k ≥ 2 in the case of the star graph Sn , defensive k-alliances do not exist. By (2) we conclude that, in any
graph, there are defensive k-alliances for k ∈ {−d1, . . . , dn}. For instance, a defensive (dn)-alliance in Γ = (V, E) is
V . Moreover, if v ∈ V is a vertex of minimum degree, δ(v) = dn , then S = {v} is a defensive k-alliance for every
k ≤ −dn . Therefore, ak(Γ ) = 1, for k ≤ −dn . For the study of the mathematical properties of ak(Γ ), k ∈ {dn, . . . , d1},
we cite [17].

A set S ⊂ V is a dominating set in Γ = (V, E) if for every vertex u ∈ S̄, δS(u) > 0 (every vertex in S̄ is adjacent to
at least one vertex in S). The domination number of Γ , denoted by γ (Γ ), is the minimum cardinality of a dominating
set in Γ .

A defensive k-alliance S is called global if it forms a dominating set. The global defensive k-alliance number of
Γ , denoted by γ a

k (Γ ), is the minimum cardinality of a defensive k-alliance in Γ . Clearly,

γ a
k+1(Γ ) ≥ γ

a
k (Γ ) ≥ γ (Γ ) and γ a

k (Γ ) ≥ ak(Γ ). (4)

The global defensive (−1)-alliance number of Γ is known as the global alliance number of Γ and the global
defensive 0-alliance number is known as the global strong alliance number [9]. For instance, in the case of the 3-cube
graph, Γ = Q3, every set composed by four vertices whose induced subgraph is isomorphic to the cycle C4 is a global
(strong) defensive alliance of minimum cardinality. Thus, γ a

−1(Q3) = γ
a
0 (Q3) = 4.

For some graphs, there are some values of k ∈ {−d1, . . . , d1}, such that global defensive k-alliances do not exist.
For instance, for k = d1 in the case of nonregular graphs, defensive k-alliances do not exist. Therefore, the bounds
showed in this paper on γ a

k (Γ ), for k ≤ d1, are obtained by supposing that the graph Γ contains defensive k-alliances.
Notice that for any graph Γ , every dominating set is a global defensive (−d1)-alliance. Hence, γ a

−d1
(Γ ) = γ (Γ ).

Moreover, for any d1-regular graph of order n, γ a
d1−1(Γ ) = γ

a
d1
(Γ ) = n.

2. Global defensive k-alliance number

Theorem 1. Let S be a global defensive k-alliance of minimum cardinality in Γ . If W ⊂ S is a dominating set in Γ ,
then for every r ∈ Z such that 0 ≤ r ≤ γ a

k (Γ )− |W |,

γ a
k−2r

(Γ )+ r ≤ γ a
k
(Γ ).
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Proof. We can take X ⊂ S such that |X | = r . Hence, for every v ∈ Y = S − X ,

δY (v) = δS(v)− δX (v)

≥ δS̄(v)+ k − δX (v)

= δȲ (v)+ k − 2δX (v)

≥ δȲ (v)+ k − 2r.

Therefore, Y is a defensive (k− 2r)-alliance in Γ . Moreover, as W ⊂ Y , Y is a dominating set and, as a consequence,
γ a

k−2r (Γ ) ≤ γ
a
k (Γ )− r. �

Notice that if every vertex of Γ has even degree and k is odd, k = 2l − 1, then every defensive (2l − 1)-alliance
in Γ is a defensive (2l)-alliance. Hence, in such a case, a2l−1(Γ ) = a2l(Γ ) and γ a

2l−1(Γ ) = γ a
2l(Γ ). Analogously,

if every vertex of Γ has odd degree and k is even, k = 2l, then every defensive (2l)-alliance in Γ is a defensive
(2l + 1)-alliance. Hence, in such a case, a2l(Γ ) = a2l+1(Γ ) and γ a

2l(Γ ) = γ
a
2l+1(Γ ). For instance, for the complete

graph of order n we have

n = γ a
n−1(Kn) = γ

a
n−2(Kn)

≥ γ a
n−3(Kn) = γ

a
n−4(Kn) = n − 1

· · ·

≥ γ a
2−n(Kn) = γ

a
3−n(Kn) = 2

≥ γ a
1−n(Kn) = 1.

Therefore, for every k ∈ {1− n, . . . , n − 1}, and for every r ∈ {0, . . . , k+n−1
2 },

γ a
k−2r

(Kn)+ r = γ a
k
(Kn). (5)

Moreover, notice that for every k ∈ {1− n, . . . , n − 1}, γ a
k (Kn) =

⌈
n+k+1

2

⌉
.

It was shown in [9] that
√

4n + 1− 1
2

≤ γ a
−1(Γ ) ≤ n −

⌈
dn

2

⌉
(6)

and

√
n ≤ γ a

0 (Γ ) ≤ n −

⌊
dn

2

⌋
. (7)

Here we generalize the previous results to defensive k-alliances.

Theorem 2. For any graph Γ ,
√

4n+k2+k
2 ≤ γ a

k (Γ ) ≤ n −
⌊

dn−k
2

⌋
.

Proof. If dn ≤ k, then γ a
k (Γ ) ≤ n ≤ n −

⌊
dn−k

2

⌋
. Otherwise, consider u ∈ V such that δ(u) ≥

⌊
dn+d1

2

⌋
. Let X ⊂ V

be the set of neighbors u has in Γ , X = {w ∈ V : w ∼ u}. Let Y ⊂ X be a vertex set such that |Y | =
⌊

dn−k
2

⌋
. In such

a case, the set V −Y is a global defensive k-alliance in Γ . That is, V −Y is a dominating set and for every v ∈ V −Y

we have δ(v)−k
2 ≥

⌊
dn−k

2

⌋
≥ δY (v). Therefore, γ a

k (Γ ) ≤ n −
⌊

dn−k
2

⌋
.

On the other hand, let S ⊆ V be a dominating set in Γ . Then,

n − |S| ≤
∑
v∈S

δS̄(v). (8)

Moreover, if S is a defensive k-alliance in Γ ,

k|S| +
∑
v∈S

δS̄(v) ≤
∑
v∈S

δS(v) ≤ |S|(|S| − 1). (9)
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Hence, solving

0 ≤ |S|2 − k|S| − n (10)

we deduce the lower bound. �

The upper bound is attained, for instance, for the complete graph Γ = Kn for every k ∈ {1 − n, . . . , n − 1}.
The lower bound is attained, for instance, for the 3-cube graph Γ = Q3, in the following cases: 2 ≤ γ a

−3(Q3) and
4 ≤ γ1(Q3) = γ0(Q3).

It was shown in [9] that for any bipartite graph Γ of order n and maximum degree d1,

γ a
−1(Γ ) ≥

⌈
2n

d1 + 3

⌉
and γ a

0 (Γ ) ≥
⌈

2n

d1 + 2

⌉
.

Here we generalize the previous bounds to defensive k-alliances. Moreover, we show that the result is not restrictive
to the case of bipartite graphs.

Theorem 3. For any graph Γ , γ a
k (Γ ) ≥

⌈
n⌊

d1−k
2

⌋
+1

⌉
.

Proof. If S denotes a defensive k-alliance in Γ , then

d1 ≥ δ(v) ≥ 2δS̄(v)+ k, ∀v ∈ S.

Therefore,⌊
d1 − k

2

⌋
≥ δS̄(v), ∀v ∈ S. (11)

Hence,

|S|

⌊
d1 − k

2

⌋
≥

∑
v∈S

δS̄(v). (12)

Moreover, if S is a dominating set, S satisfies inequality (8). The result follows by (8) and (12). �

The above bound is tight. For instance, for the Petersen graph the bound is attained for every k: 3 ≤ γ a
−3(Γ ),

4 ≤ γ a
−2(Γ ) = γ a

−1(Γ ), 5 ≤ γ0(Γ ) = γ1(Γ ) and 10 ≤ γ2(Γ ) = γ3(Γ ). For the 3-cube graph Γ = Q3,
the above theorem leads to the following exact values of γ a

k (Q3): 2 ≤ γ a
−3(Q3), 4 ≤ γ0(Q3) = γ1(Q3) and

8 ≤ γ2(Q3) = γ3(Q3).
Hereafter, we denote by L(Γ ) = (Vl , El) the line graph of a simple graph Γ . The degree of the vertex

e = {u, v} ∈ Vl is δ(e) = δ(u) + δ(v) − 2. If the degree sequence of Γ is d1 ≥ d2 ≥ · · · ≥ dn , then the maximum
degree of L(Γ ), denoted by ∆l , is bounded by ∆l ≤ d1 + d2 − 2.

Corollary 4. For any graph Γ of size m and maximum degrees d1 ≥ d2,

γ a
k (L(Γ )) ≥

 m⌊
d1+d2−2−k

2

⌋
+ 1

 .
The above bound is attained for k ∈ {−3,−2,−1, 2, 3} in the case of the complete bipartite graph Γ = K1,4.

Notice that L(K1,4) = K4 and γ a
−3(K4) = 1, γ a

−2(K4) = γ
a
−1(K4) = 2, γ a

2 (K4) = γ
a
3 (K4) = 4.

In the case of cubic graphs1 γ (Γ ) = γ a
−3(Γ ) ≤ γ

a
−2(Γ ) = γ

a
−1(Γ ) ≤ γ

a
0 (Γ ) = γ

a
1 (Γ ) ≤ γ

a
2 (Γ ) = γ

a
3 (Γ ) = n.

So, in this case we only study, γ a
−1(Γ ) and γ a

0 (Γ ).

Theorem 5. For any cubic graph Γ , γ a
−1(Γ ) ≤ 2γ (Γ ).

1 A cubic graph is a 3-regular graph.



J.A. Rodrı́guez-Velázquez, J.M. Sigarreta / Discrete Applied Mathematics 157 (2009) 211–218 215

Proof. Let S be a dominating set of minimum cardinality in Γ . Let X ⊆ S be the set composed by all vi ∈ S such
that δS(vi ) = 0. For each vi ∈ X we take a vertex ui ∈ S̄ such that ui ∼ vi . Let Y ⊆ S̄ be defined as Y = ∪vi∈X {ui }.
Then we have |Y | ≤ γ (Γ ) and the set S ∪ Y is a global defensive (−1)-alliance in Γ . �

The above bound is tight. For instance, in the case of the 3-cube graph we have γ a
−1(Q3) = 2γ (Q3) = 4.

A set S ⊂ V is a total dominating set if every vertex in V has a neighbor in S. The total domination number γt (Γ )
is the minimum cardinality of a total dominating set in Γ . Notice that if Γ is a cubic graph, then

γ a
−1(Γ ) = γt (Γ ). (13)

It was shown in [5] that if Γ is a connected graph of order n ≥ 3, then

γt (Γ ) ≤
2n

3
. (14)

Moreover, by Theorem 3 we have

n

3
≤ γ a
−1(Γ ) and

n

2
≤ γ a

0 (Γ ). (15)

3. Defensive k-alliances in planar graphs

It is well-known that the size of a planar graph Γ of order n ≥ 3 is bounded by m ≤ 3(n − 2). Moreover, in the
case of triangle-free graphs m ≤ 2(n−2). This inequalities allow us to obtain tight bounds for the studied parameters.

Theorem 6. Let Γ = (V, E) be a graph of order n. If Γ has a global defensive k-alliance S such that the subgraph
〈S〉 is planar.

(i) If n > 2(2− k), then |S| ≥
⌈

n+12
7−k

⌉
.

(ii) If n > 2(2− k) and 〈S〉 is a triangle-free graph, then |S| ≥
⌈

n+8
5−k

⌉
.

Proof. (i) If |S| ≤ 2, for every v ∈ S we have δS̄(v) ≤ 1−k. Thus, n ≤ 2(2−k). Therefore, n > 2(2−k)⇒ |S| > 2.
If 〈S〉 is planar and |S| > 2, the size of 〈S〉 is bounded by

1
2

∑
v∈S

δS(v) ≤ 3(|S| − 2). (16)

If S is a global defensive k-alliance in Γ ,

k|S| + (n − |S|) ≤ k|S| +
∑
v∈S

δS̄(v) ≤
∑
v∈S

δS(v). (17)

By (16) and (17) the result follows.
(ii) If 〈S〉 is a triangle-free graph, then

1
2

∑
v∈S

δS(v) ≤ 2(|S| − 2). (18)

The result follows by (17) and (18). �

Corollary 7. For any planar graph Γ of order n.

(a) If n > 2(2− k), then γ a
k (Γ ) ≥

⌈
n+12
7−k

⌉
.

(b) If n > 2(2− k) and Γ is a triangle-free graph, then γ a
k (Γ ) ≥

⌈
n+8
5−k

⌉
.

The above bounds are tight. In the case of the graph of Fig. 1, the set S = {1, 2, 3} is a global defensive k-alliance
for k = −2, k = −1 and k = 0, and Corollary 7(a) leads to γ a

k (Γ ) ≥ 3. Moreover, if Γ = Q3, the 3-cube graph,
Corollary 7(b) leads to the following exact values of γ a

k (Q3): 2 ≤ γ a
−3(Q3), 4 ≤ γ a

0 (Q3) = γ
a
1 (Q3) and 8 ≤ γ a

3 (Q3).
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Fig. 1.

Fig. 2.

Theorem 8. Let Γ be a graph of order n. If Γ has a global defensive k-alliance S such that the subgraph 〈S〉 is
planar connected with f faces. Then,

|S| ≥

⌈
n − 2 f + 4

3− k

⌉
.

Proof. By Euler’s formula,
∑
v∈S δS(v) = 2(|S| + f − 2), and (17) we deduce the result. �

In the case of the graph of Fig. 1, the set S = {1, 2, 3} is a global defensive k-alliance for k = −1, k = 0 and
k = 2. Moreover, 〈S〉 has two faces. In such a case, Theorem 8 leads to |S| ≥ 3.

3.1. Defensive k-alliances in trees

In this section we study global defensive k-alliances in trees but we impose a condition on the number of connected
components of the subgraphs induced by the alliances.

Theorem 9. Let T be a tree of order n. Let S be a global defensive k-alliance in T such that the subgraph 〈S〉 has c
connected components. Then,

|S| ≥

⌈
n + 2c

3− k

⌉
.

Proof. As the subgraph 〈S〉 is a forest with c connected components,∑
v∈S

δS(v) = 2(|S| − c). (19)

The bound of |S| follows from (17) and (19). �

The above bound is attained, for instance, for the left-hand-side graph of Fig. 2, where S = {1, 2, 3, 4} is a global
defensive (−1)-alliance and 〈S〉 has two connected components. Moreover, the bound is attained in the case of the
right-hand-side graph of Fig. 2, where S = {1, 2, 3, 4, 5} is a global defensive 0-alliance and 〈S〉 has two connected
components.
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Corollary 10. For any tree T of order n, γ a
k (T ) ≥

⌈
n+2
3−k

⌉
.

The above bound is attained for k ∈ {−4,−3,−2, 0, 1} in the case of Γ = K1,4. As a particular case of the above
theorem we obtain the bounds obtained in [9]:

γ a
−1(T ) ≥

⌈
n + 2

4

⌉
and γ a

0 (T ) ≥

⌈
n + 2

3

⌉
.

4. Global connected defensive k-alliances

It is clear that a defensive k-alliance of minimum cardinality must induce a connected subgraph. But we can have
a global defensive k-alliance of minimum cardinality with nonconnected induced subgraph. We say that a defensive
k-alliance S is connected if 〈S〉 is connected. We denote by γ ca

k (Γ ) the minimum cardinality of a global connected
defensive k-alliance in Γ . Obviously, γ ca

k (Γ ) ≥ γ a
k (Γ ). For instance, for the left-hand-side graph of Fig. 2 we have

γ ca
−1(Γ ) = 5 > 4 = γ a

−1(Γ ) and for the right-hand-side graph of Fig. 2 we have γ ca
0 (Γ ) = 6 > 5 = γ a

0 (Γ ).

Theorem 11. For any connected graph Γ of diameter D(Γ ),

(i) γ ca
k (Γ ) ≥

⌈√
4(D(Γ )+n−1)+(1−k)2+(k−1)

2

⌉
.

(ii) γ ca
k (Γ ) ≥

⌈
n+D(Γ )−1⌊

∆−k
2

⌋
+2

⌉
.

Proof. If S is a dominating set in Γ such that 〈S〉 is connected, then D(Γ ) ≤ D(〈S〉)+ 2. Hence,

D(Γ ) ≤ |S| + 1. (20)

Moreover, if S is a global defensive k-alliance in Γ , then |S| satisfies (10). The first result follows by (10) and (20).
As a consequence of (8), (11) and (20) we obtain the second result. �

Both bounds in Theorem 11 are tight. For instance, both bounds are attained for k ∈ {−2,−1, 0} for the graph of
Fig. 1. In such a case, both bounds lead to γ ca

k (Γ ) ≥ 3. Moreover, both bounds lead to the exact values of γ ca
k (K3,3) in

the following cases: 2 ≤ γ ca
−3(K3,3) = γ

ca
−2(K3,3) = γ

ca
−1(K3,3). Furthermore, notice that bound (ii) leads to the exact

values of γ ca
k (Q3) in the cases 4 ≤ γ ca

0 (Q3) = γ
ca
1 (Q3), while bound (i) only gives 3 ≤ γ a

0 (Q3) and 3 ≤ γ ca
1 (Q3).

By Theorem 11, and taking into account that D(Γ ) − 1 ≤ D(L(Γ )), we obtain the following result on the global
connected k-alliance number of the line graph of Γ in terms of some parameters of Γ .

Corollary 12. For any connected graph Γ of size m, diameter D(Γ ), and maximum degrees d1 ≥ d2,

(i) γ ca
k (L(Γ )) ≥

⌈√
4(D(Γ )+m−2)+(1−k)2−(1−k)

2

⌉
.

(ii) γ ca
k (L(Γ )) ≥

⌈
2(m+D(Γ )−2)

d1+d2−k+1

⌉
.
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