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Abstract

Let I' = (V, E) be a simple graph. For a nonempty set X C V, and a vertex v € V, §x(v) denotes the number of neighbors
v has in X. A nonempty set S € V is a defensive k-alliance in I' = (V, E) if §5(v) > d5(v) + k, Vv € S. A defensive k-alliance
S is called global if it forms a dominating set. The global defensive k-alliance number of I', denoted by y/f(]“), is the minimum
cardinality of a defensive k-alliance in I". We study the mathematical properties of )/]f ().
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Since (defensive, offensive and dual) alliances were first introduced by Kristiansen, Hedetniemi and Hedetniemi
[12], several authors have studied their mathematical properties [2,4,3,6,9,13,14,16,18,20,22] as well as the
complexity of computing minimum cardinality of alliances [1,7,10,11]. The minimum cardinality of a defensive
(respectively, offensive or dual) alliance in a graph [’ is called the defensive (respectively, offensive or dual) alliance
number of I'. The mathematical properties of defensive alliances were first studied in [12] where several bounds on
the defensive alliance number were given. The particular case of global (strong) defensive alliances was investigated
in [9] where several bounds on the global (strong) defensive alliance number were obtained. The dual alliances were
introduced as powerful alliances in [2,3]. In [14] there were obtained several tight bounds on the defensive (offensive
and dual) alliance number. In particular, there was investigated the relationship between the alliance numbers of a
graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius. Moreover, the study of
global defensive (offensive and dual) alliances in a planar graph was initiated in [16] and the study of defensive
alliances in the line graph of a simple graph was initiated in [22]. The particular case of global alliances in trees has
been investigated in [4]. For many properties of offensive alliances, the readers may refer to [6,13,15,23].

A generalization of (defensive and offensive) alliances called k-alliances was presented by Shafique and Dutton
[18,19] where was initiated the study of k-alliance free sets and k-alliance cover sets. The aim of this work is to
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study mathematical properties of defensive k-alliances. We begin by stating the terminology used. Throughout this
article, I' = (V, E) denotes a simple graph of order |V| = n and size |E| = m. We denote two adjacent vertices u
and v by u ~ v. For a nonempty set X C V, and a vertex v € V, Nx(v) denotes the set of neighbors v has in X:
Nx () = {u € X : u ~ v}, and the degree of v in X will be denoted by §x (v) = |Nx(v)|. We denote the degree of
a vertex v; € V by 8(v;) (or by d; for short) and the degree sequence of I' by di > do > --- > d,. The subgraph
induced by S € V will be denoted by (S) and the complement of the set S in V will be denoted by S.

A nonempty set S C V is a defensive k-alliancein I' = (V, E), k € {—dy, ..., d1},ifforeveryv € S,

8s(v) = 85(v) + k. )
A vertex v € § is said to be k-satisfied by the set S if (1) holds. Notice that (1) is equivalent to

3(v) > 265(v) + k. (2)

A defensive (—1)-alliance is a defensive alliance and a defensive 0-alliance is a strong defensive alliance as defined
in [12]. A defensive 0-alliance is also known as a cohesive set [21].

The defensive k-alliance number of I', denoted by ay(I"), is defined as the minimum cardinality of a defensive
k-alliance in I'. Notice that

ak1 (1) = ar(I). 3)

The defensive (—1)-alliance number of I" is known as the alliance number of I' and the defensive 0-alliance
number is known as the strong alliance number, [12,8,9]. For instance, in the case of the 3-cube graph, I" = Q3,
every set composed by two adjacent vertices is a defensive alliance of minimum cardinality and every set composed
by four vertices whose induced subgraph is isomorphic to the cycle C4 is a strong defensive alliance of minimum
cardinality. Thus, a_1(Q3) = 2 and ap(Q3) = 4.

For some graphs, there are some values of k € {—dj, ..., d;}, such that defensive k-alliances do not exist. For
instance, for k > 2 in the case of the star graph S,,, defensive k-alliances do not exist. By (2) we conclude that, in any
graph, there are defensive k-alliances for k € {—d, ..., d,}. For instance, a defensive (dy)-alliance in I' = (V, E) is

V. Moreover, if v € V is a vertex of minimum degree, §(v) = d,, then S = {v} is a defensive k-alliance for every
k < —d,. Therefore, ay (I') = 1, for k < —d,,. For the study of the mathematical properties of ax (I"), k € {d,, ..., d1},
we cite [17].

Aset S C V isadominating setin I' = (V, E) if for every vertex u € S, 85(u) >0 (every vertex in Sis adjacent to
at least one vertex in S). The domination number of I', denoted by y (I"), is the minimum cardinality of a dominating
setin I'.

A defensive k-alliance S is called global if it forms a dominating set. The global defensive k-alliance number of
I, denoted by y;(I"), is the minimum cardinality of a defensive k-alliance in I". Clearly,

Virr D) =2 v (D) = y(I)  and  y{ (1) = ar(D). “4)

The global defensive (—1)-alliance number of I" is known as the global alliance number of I' and the global
defensive 0-alliance number is known as the global strong alliance number [9]. For instance, in the case of the 3-cube
graph, I' = Q3, every set composed by four vertices whose induced subgraph is isomorphic to the cycle Cy is a global
(strong) defensive alliance of minimum cardinality. Thus, y*,(Q3) = y;(Q3) = 4.

For some graphs, there are some values of k € {—d, ..., d1}, such that global defensive k-alliances do not exist.
For instance, for k = d in the case of nonregular graphs, defensive k-alliances do not exist. Therefore, the bounds
showed in this paper on y;’ (I'), for k < d, are obtained by supposing that the graph I" contains defensive k-alliances.
Notice that for any graph I', every dominating set is a global defensive (—d;)-alliance. Hence, y“ 4 I =yd).
Moreover, for any d;-regular graph of order n, yé‘l_ N = yj’l (I') =n.

2. Global defensive k-alliance number

Theorem 1. Let S be a global defensive k-alliance of minimum cardinality in I'. If W C S is a dominating setin I,
then for everyr € Z such that 0 <r < y/(I") — |W]|,

ye (D) +r < y“(D).
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Proof. We can take X C S such that | X| = r. Hence, foreveryv € ¥ = § — X,

dy (v) = 85(v) — dx(v)
> 85(v) +k —8x(v)
=0y(v) +k —26x(v)
> 85 (v) +k —2r.

Therefore, Y is a defensive (k — 2r)-alliance in I'. Moreover, as W C Y, Y is a dominating set and, as a consequence,
Vi, (D) =yi)—r. O

Notice that if every vertex of I" has even degree and k is odd, k = 2 — 1, then every defensive (2/ — 1)-alliance
in I" is a defensive (2/)-alliance. Hence, in such a case, ag;—1(I") = ay(I") and y35;_,(I") = Vzaz (I'). Analogously,
if every vertex of I" has odd degree and k is even, k = 2I, then every defensive (2/)-alliance in I is a defensive
(21 + 1)-alliance. Hence, in such a case, ay/(I") = a;+1(I') and yﬁ I = y§+1 (I"). For instance, for the complete
graph of order n we have

n = Vy?_](Kn) = Vy?_z(Kn)
= 75_3(Kn) = V;_4(Kn) =n-—1

Vza_n(Kn) = V3a_n(Kn) =2
Vfl_n(Kn) =1.

=
=

Therefore, for every k € {l —n,...,n — 1}, and for every r € {0, ..., &2=1},

Ve, (Kn) +r =y (Kn). ®)

Moreover, notice that forevery k € {1 —n,...,n — 1}, yk"(K,,) = ’7#—‘

It was shown in [9] that

Sy =n - ["ﬂ ©)
and
a d”
ﬁSVO(F)En—ng- 7

Here we generalize the previous results to defensive k-alliances.

Theorem 2. For any graph I', —V4"“2Lk2+k <yid)<n-— L#J .
Proof. If d, <k, then y&(I') <n <n — L%J Otherwise, consider u € V such that 8(u) > L%J LetX CV

be the set of neighbors u hasin I', X = {w € V : w ~ u}. Let Y C X be a vertex set such that |Y| = L%J In such

a case, the set V — Y is a global defensive k-alliance in I'. Thatis, V — Y is a dominating set and foreveryv € V —Y
we have W > {@J > 8y (v). Therefore, y'(I') <n — L#J
On the other hand, let § € V be a dominating set in I". Then,
n—1S| <) 85). ®)
ves
Moreover, if S is a defensive k-alliance in I,

kISI+ ) 85) <Y 85(v) < [SI(1S| = 1). ©)

ves ves
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Hence, solving
0<|S>=k|S|—n 10
we deduce the lower bound. [

The upper bound is attained, for instance, for the complete graph I" = K, for every k € {1l —n,...,n — 1}.
The lower bound is attained, for instance, for the 3-cube graph I' = Q3, in the following cases: 2 < y¢,(Q3) and

4 < 71(Q3) = y0(Q3).
It was shown in [9] that for any bipartite graph I" of order n and maximum degree dj,

2n 2n
“ (I > d () >|——|.
24 ( )_’7d1+3—‘ and  y;'( )_’le_i_z—‘

Here we generalize the previous bounds to defensive k-alliances. Moreover, we show that the result is not restrictive
to the case of bipartite graphs.

Theorem 3. For any graph I', y¢(I') > ’VW—‘ .
iy

2
Proof. If S denotes a defensive k-alliance in I, then
dy > 8() > 205(v) +k, VYveS.

Therefore,

Vlz_kJ > 8:(v), Vv eS. (11)

Hence,

dy —k
|S|{ = JEZ%@)- (12)

ves

Moreover, if S is a dominating set, S satisfies inequality (8). The result follows by (8) and (12). O

The above bound is tight. For instance, for the Petersen graph the bound is attained for every k: 3 < y“;(I'),
4 <y = y4UI), S < wd) = i) and 10 < () = y3(I). For the 3-cube graph I' = Q3,
the above theorem leads to the following exact values of y'(Q3): 2 < y?;(0Q3), 4 < y(Q3) = y1(Q3) and

8 < 2(03) = 3(03).

Hereafter, we denote by L£(I') = (V;, E;) the line graph of a simple graph I'. The degree of the vertex
e ={u,v} € Viisd(e) = 8(u) + 8(v) — 2. If the degree sequence of I" isdy > dp > --- > d,, then the maximum
degree of L(I"), denoted by Ay, is bounded by A; < dj + dp — 2.

Corollary 4. For any graph I' of size m and maximum degrees d| > d,

m

veL) = | —
k Ld1+d22727kJ 1

The above bound is attained for k € {—3, —2, —1, 2, 3} in the case of the complete bipartite graph I' = K 4.
Notice that £(K1 4) = K4 and y“5(Kg) = 1, y*,(Kg) = y2,(Kq) =2, 5 (K4) = y5 (Kg) = 4.

In the case of cubic graphs! ¥ (I) = y*;(I') < y%,(I) = y* (I < y¢(I) = y{(I) < y§(I) = y{(I) = n.
So, in this case we only study, y*,(I") and yy (I").

Theorem S. For any cubic graph I', y*,(I") < 2y(I).

LA cubic graph is a 3-regular graph.
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Proof. Let S be a dominating set of minimum cardinality in I". Let X C S be the set composed by all v; € S such
that §s(v;) = 0. For each v; € X we take a vertex u; € S such thatu; ~ v;. Let Y C § be defined as ¥ = Uy, ex{u;}.
Then we have |Y| < y(I") and the set S U Y is a global defensive (—1)-alliance in I". [J

The above bound is tight. For instance, in the case of the 3-cube graph we have ¥, (Q3) = 2y (Q3) = 4.
A set § C V is a total dominating set if every vertex in V has a neighbor in S. The total domination number y; (")
is the minimum cardinality of a total dominating set in I". Notice that if I" is a cubic graph, then

y4 ) = y(). 13)

It was shown in [5] that if I" is a connected graph of order n > 3, then

2n
() < 3 (14)
Moreover, by Theorem 3 we have
n a n a
3= &) and 3N (). 5)

3. Defensive k-alliances in planar graphs

It is well-known that the size of a planar graph I" of order n > 3 is bounded by m < 3(n — 2). Moreover, in the
case of triangle-free graphs m < 2(n —2). This inequalities allow us to obtain tight bounds for the studied parameters.

Theorem 6. Let I' = (V, E) be a graph of order n. If I has a global defensive k-alliance S such that the subgraph
(S) is planar.

() If n > 22 — k), then |S| > {”“ﬂ .

T—k
(1) If n > 2(2 — k) and (S) is a triangle-free graph, then |S| > ’V’S’T%—I .

Proof. (i) If [S| < 2, forevery v € S we have 85(v) < 1—k. Thus,n < 2(2—k). Therefore,n > 2(2—k) = |S| > 2.
If (S) is planar and |S| > 2, the size of (S) is bounded by

1
5285 = 3(IS1 - 2). (16)
ves
If S is a global defensive k-alliance in I,
kISI+ (n—|S) <kIS|+ ) 85(v) <D 85(v). (17)
ves veSs

By (16) and (17) the result follows.
(ii) If (S) is a triangle-free graph, then

1
5255(1)) < 2(IS] = 2). (18)

ves

The result follows by (17) and (18). U

Corollary 7. For any planar graph I' of order n.

@) If n > 22 — k), then y(I') > (n;_lﬂ .

() If n > 2(2 — k) and I is a triangle-free graph, then y! (I") > [%—‘ .

The above bounds are tight. In the case of the graph of Fig. 1, the set S = {1, 2, 3} is a global defensive k-alliance
fork = =2,k = —1 and k = 0, and Corollary 7(a) leads to yka (I') = 3. Moreover, if I' = O3, the 3-cube graph,
Corollary 7(b) leads to the following exact values of y; (Q3): 2 < y93(0Q3),4 < ¥ (Q3) = y{'(Q3) and 8 < y5'(Q3).
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Fig. 1.
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Fig. 2.

Theorem 8. Let I' be a graph of order n. If I' has a global defensive k-alliance S such that the subgraph (S) is
planar connected with f faces. Then,

n—2f+4
[S| > IVT—‘

Proof. By Euler’s formula, ) ¢ 8s(v) = 2(|S| 4+ f — 2), and (17) we deduce the result. [

In the case of the graph of Fig. 1, the set S = {1, 2, 3} is a global defensive k-alliance for k = —1, k = 0 and
k = 2. Moreover, (S) has two faces. In such a case, Theorem 8 leads to |S| > 3.

3.1. Defensive k-alliances in trees

In this section we study global defensive k-alliances in trees but we impose a condition on the number of connected
components of the subgraphs induced by the alliances.

Theorem 9. Let T be a tree of order n. Let S be a global defensive k-alliance in T such that the subgraph (S) has ¢
connected components. Then,

n+2c
S| > .
=[]
Proof. As the subgraph (S) is a forest with ¢ connected components,

Y 8s() =2(S| — o). 19)

ves

The bound of | S| follows from (17) and (19). [

The above bound is attained, for instance, for the left-hand-side graph of Fig. 2, where S = {1, 2, 3, 4} is a global
defensive (—1)-alliance and (S) has two connected components. Moreover, the bound is attained in the case of the
right-hand-side graph of Fig. 2, where § = {1, 2, 3, 4, 5} is a global defensive O-alliance and (S) has two connected
components.



J.A. Rodriguez-Veldzquez, J.M. Sigarreta / Discrete Applied Mathematics 157 (2009) 211-218 217

Corollary 10. For any tree T of order n, y;!(T) > ’V%-I .

The above bound is attained for k € {—4, —3, =2, 0, 1} in the case of I" = K| 4. As a particular case of the above
theorem we obtain the bounds obtained in [9]:

y (1) 2 [”%ﬂ and  y{/(T) = P”;ﬂ

4. Global connected defensive k-alliances

It is clear that a defensive k-alliance of minimum cardinality must induce a connected subgraph. But we can have
a global defensive k-alliance of minimum cardinality with nonconnected induced subgraph. We say that a defensive
k-alliance S is connected if (S) is connected. We denote by y,“(I") the minimum cardinality of a global connected
defensive k-alliance in I". Obviously, y*(I") > y;’(I"). For instance, for the left-hand-side graph of Fig. 2 we have
Y9Iy =5 > 4 =y (I') and for the right-hand-side graph of Fig. 2 we have yj“(I") = 6 > 5 =y (I').

Theorem 11. For any connected graph I' of diameter D(I"),
(i) yea() = ’7\/4(D(F)+n1;+(1k)2+(k1)—‘ '
i) yeo () > | 2L
(i) v “( )_IVLAsz_FZ
Proof. If S is a dominating set in I" such that (S) is connected, then D(I") < D((S)) + 2. Hence,
D(I') < |S|+ 1. (20

Moreover, if S is a global defensive k-alliance in I, then | S| satisfies (10). The first result follows by (10) and (20).
As a consequence of (8), (11) and (20) we obtain the second result. [

Both bounds in Theorem 11 are tight. For instance, both bounds are attained for k € {—2, —1, 0} for the graph of
Fig. 1. In such a case, both bounds lead to y“(I") > 3. Moreover, both bounds lead to the exact values of y; (K3 3) in
the following cases: 2 < y“5(K3,3) = y5(K33) = ¥ (K3,3). Furthermore, notice that bound (ii) leads to the exact
values of y;“(Q3) in the cases 4 < y;“(Q3) = y;“(Q3), while bound (i) only gives 3 < yf (Q3) and 3 < y[“(Q3).

By Theorem 11, and taking into account that D(I") — 1 < D(L(I")), we obtain the following result on the global

connected k-alliance number of the line graph of I" in terms of some parameters of I

Corollary 12. For any connected graph I' of size m, diameter D(I), and maximum degrees d| > d»,
. 4D +m—2)+(1—k)2—(1—k

(i) yE (L) = [\/ CITREE T )_‘ .

(i) e (L(D) = | 22 |
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