Global defensive k-alliances in graphs

J.A. Rodríguez-Velázquez ${ }^{\text {a,* }}$, J.M. Sigarreta ${ }^{\text {b }}$
${ }^{\text {a Department of Computer Engineering and Mathematics, Rovira i Virgili University of Tarragona, Av. Països Catalans 26, }}$ 43007 Tarragona, Spain
${ }^{\mathrm{b}}$ Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés (Madrid), Spain

Received 20 November 2006; received in revised form 5 November 2007; accepted 12 February 2008
Available online 24 March 2008

Abstract

Let $\Gamma=(V, E)$ be a simple graph. For a nonempty set $X \subseteq V$, and a vertex $v \in V, \delta_{X}(v)$ denotes the number of neighbors v has in X. A nonempty set $S \subseteq V$ is a defensive k-alliance in $\Gamma=(V, E)$ if $\delta_{S}(v) \geq \delta_{\bar{S}}(v)+k, \forall v \in S$. A defensive k-alliance S is called global if it forms a dominating set. The global defensive k-alliance number of Γ, denoted by $\gamma_{k}^{a}(\Gamma)$, is the minimum cardinality of a defensive k-alliance in Γ. We study the mathematical properties of $\gamma_{k}^{a}(\Gamma)$.

(c) 2008 Elsevier B.V. All rights reserved.

Keywords: Defensive alliances; Alliances in graphs; Domination

1. Introduction

Since (defensive, offensive and dual) alliances were first introduced by Kristiansen, Hedetniemi and Hedetniemi [12], several authors have studied their mathematical properties $[2,4,3,6,9,13,14,16,18,20,22]$ as well as the complexity of computing minimum cardinality of alliances $[1,7,10,11]$. The minimum cardinality of a defensive (respectively, offensive or dual) alliance in a graph Γ is called the defensive (respectively, offensive or dual) alliance number of Γ. The mathematical properties of defensive alliances were first studied in [12] where several bounds on the defensive alliance number were given. The particular case of global (strong) defensive alliances was investigated in [9] where several bounds on the global (strong) defensive alliance number were obtained. The dual alliances were introduced as powerful alliances in [2,3]. In [14] there were obtained several tight bounds on the defensive (offensive and dual) alliance number. In particular, there was investigated the relationship between the alliance numbers of a graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius. Moreover, the study of global defensive (offensive and dual) alliances in a planar graph was initiated in [16] and the study of defensive alliances in the line graph of a simple graph was initiated in [22]. The particular case of global alliances in trees has been investigated in [4]. For many properties of offensive alliances, the readers may refer to [6,13,15,23].

A generalization of (defensive and offensive) alliances called k-alliances was presented by Shafique and Dutton $[18,19]$ where was initiated the study of k-alliance free sets and k-alliance cover sets. The aim of this work is to

[^0]study mathematical properties of defensive k-alliances. We begin by stating the terminology used. Throughout this article, $\Gamma=(V, E)$ denotes a simple graph of order $|V|=n$ and size $|E|=m$. We denote two adjacent vertices u and v by $u \sim v$. For a nonempty set $X \subseteq V$, and a vertex $v \in V, N_{X}(v)$ denotes the set of neighbors v has in X : $N_{X}(v):=\{u \in X: u \sim v\}$, and the degree of v in X will be denoted by $\delta_{X}(v)=\left|N_{X}(v)\right|$. We denote the degree of a vertex $v_{i} \in V$ by $\delta\left(v_{i}\right)$ (or by d_{i} for short) and the degree sequence of Γ by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. The subgraph induced by $S \subset V$ will be denoted by $\langle S\rangle$ and the complement of the set S in V will be denoted by \bar{S}.

A nonempty set $S \subseteq V$ is a defensive k-alliance in $\Gamma=(V, E), k \in\left\{-d_{1}, \ldots, d_{1}\right\}$, if for every $v \in S$,

$$
\begin{equation*}
\delta_{S}(v) \geq \delta_{\bar{S}}(v)+k \tag{1}
\end{equation*}
$$

A vertex $v \in S$ is said to be k-satisfied by the set S if (1) holds. Notice that (1) is equivalent to

$$
\begin{equation*}
\delta(v) \geq 2 \delta_{\bar{S}}(v)+k \tag{2}
\end{equation*}
$$

A defensive (-1)-alliance is a defensive alliance and a defensive 0 -alliance is a strong defensive alliance as defined in [12]. A defensive 0 -alliance is also known as a cohesive set [21].

The defensive k-alliance number of Γ, denoted by $a_{k}(\Gamma)$, is defined as the minimum cardinality of a defensive k-alliance in Γ. Notice that

$$
\begin{equation*}
a_{k+1}(\Gamma) \geq a_{k}(\Gamma) \tag{3}
\end{equation*}
$$

The defensive (-1)-alliance number of Γ is known as the alliance number of Γ and the defensive 0 -alliance number is known as the strong alliance number, $[12,8,9]$. For instance, in the case of the 3-cube graph, $\Gamma=Q_{3}$, every set composed by two adjacent vertices is a defensive alliance of minimum cardinality and every set composed by four vertices whose induced subgraph is isomorphic to the cycle C_{4} is a strong defensive alliance of minimum cardinality. Thus, $a_{-1}\left(Q_{3}\right)=2$ and $a_{0}\left(Q_{3}\right)=4$.

For some graphs, there are some values of $k \in\left\{-d_{1}, \ldots, d_{1}\right\}$, such that defensive k-alliances do not exist. For instance, for $k \geq 2$ in the case of the star graph S_{n}, defensive k-alliances do not exist. By (2) we conclude that, in any graph, there are defensive k-alliances for $k \in\left\{-d_{1}, \ldots, d_{n}\right\}$. For instance, a defensive $\left(d_{n}\right)$-alliance in $\Gamma=(V, E)$ is V. Moreover, if $v \in V$ is a vertex of minimum degree, $\delta(v)=d_{n}$, then $S=\{v\}$ is a defensive k-alliance for every $k \leq-d_{n}$. Therefore, $a_{k}(\Gamma)=1$, for $k \leq-d_{n}$. For the study of the mathematical properties of $a_{k}(\Gamma), k \in\left\{d_{n}, \ldots, d_{1}\right\}$, we cite [17].

A set $S \subset V$ is a dominating set in $\Gamma=(V, E)$ if for every vertex $u \in \bar{S}, \delta_{S}(u)>0$ (every vertex in \bar{S} is adjacent to at least one vertex in S). The domination number of Γ, denoted by $\gamma(\Gamma)$, is the minimum cardinality of a dominating set in Γ.

A defensive k-alliance S is called global if it forms a dominating set. The global defensive k-alliance number of Γ, denoted by $\gamma_{k}^{a}(\Gamma)$, is the minimum cardinality of a defensive k-alliance in Γ. Clearly,

$$
\begin{equation*}
\gamma_{k+1}^{a}(\Gamma) \geq \gamma_{k}^{a}(\Gamma) \geq \gamma(\Gamma) \quad \text { and } \quad \gamma_{k}^{a}(\Gamma) \geq a_{k}(\Gamma) \tag{4}
\end{equation*}
$$

The global defensive (-1)-alliance number of Γ is known as the global alliance number of Γ and the global defensive 0 -alliance number is known as the global strong alliance number [9]. For instance, in the case of the 3-cube graph, $\Gamma=Q_{3}$, every set composed by four vertices whose induced subgraph is isomorphic to the cycle C_{4} is a global (strong) defensive alliance of minimum cardinality. Thus, $\gamma_{-1}^{a}\left(Q_{3}\right)=\gamma_{0}^{a}\left(Q_{3}\right)=4$.

For some graphs, there are some values of $k \in\left\{-d_{1}, \ldots, d_{1}\right\}$, such that global defensive k-alliances do not exist. For instance, for $k=d_{1}$ in the case of nonregular graphs, defensive k-alliances do not exist. Therefore, the bounds showed in this paper on $\gamma_{k}^{a}(\Gamma)$, for $k \leq d_{1}$, are obtained by supposing that the graph Γ contains defensive k-alliances. Notice that for any graph Γ, every dominating set is a global defensive $\left(-d_{1}\right)$-alliance. Hence, $\gamma_{-d_{1}}^{a}(\Gamma)=\gamma(\Gamma)$. Moreover, for any d_{1}-regular graph of order $n, \gamma_{d_{1}-1}^{a}(\Gamma)=\gamma_{d_{1}}^{a}(\Gamma)=n$.

2. Global defensive k-alliance number

Theorem 1. Let S be a global defensive k-alliance of minimum cardinality in Γ. If $W \subset S$ is a dominating set in Γ, then for every $r \in \mathbb{Z}$ such that $0 \leq r \leq \gamma_{k}^{a}(\Gamma)-|W|$,

$$
\gamma_{k-2 r}^{a}(\Gamma)+r \leq \gamma_{k}^{a}(\Gamma)
$$

Proof. We can take $X \subset S$ such that $|X|=r$. Hence, for every $v \in Y=S-X$,

$$
\begin{aligned}
\delta_{Y}(v) & =\delta_{S}(v)-\delta_{X}(v) \\
& \geq \delta_{\bar{S}}(v)+k-\delta_{X}(v) \\
& =\delta_{\bar{Y}}(v)+k-2 \delta_{X}(v) \\
& \geq \delta_{\bar{Y}}(v)+k-2 r .
\end{aligned}
$$

Therefore, Y is a defensive $(k-2 r)$-alliance in Γ. Moreover, as $W \subset Y, Y$ is a dominating set and, as a consequence, $\gamma_{k-2 r}^{a}(\Gamma) \leq \gamma_{k}^{a}(\Gamma)-r$.

Notice that if every vertex of Γ has even degree and k is odd, $k=2 l-1$, then every defensive $(2 l-1)$-alliance in Γ is a defensive (2l)-alliance. Hence, in such a case, $a_{2 l-1}(\Gamma)=a_{2 l}(\Gamma)$ and $\gamma_{2 l-1}^{a}(\Gamma)=\gamma_{2 l}^{a}(\Gamma)$. Analogously, if every vertex of Γ has odd degree and k is even, $k=2 l$, then every defensive ($2 l$)-alliance in Γ is a defensive $(2 l+1)$-alliance. Hence, in such a case, $a_{2 l}(\Gamma)=a_{2 l+1}(\Gamma)$ and $\gamma_{2 l}^{a}(\Gamma)=\gamma_{2 l+1}^{a}(\Gamma)$. For instance, for the complete graph of order n we have

$$
\begin{aligned}
n= & \gamma_{n-1}^{a}\left(K_{n}\right)=\gamma_{n-2}^{a}\left(K_{n}\right) \\
\geq & \gamma_{n-3}^{a}\left(K_{n}\right)=\gamma_{n-4}^{a}\left(K_{n}\right)=n-1 \\
& \ldots \\
\geq & \gamma_{2-n}^{a}\left(K_{n}\right)=\gamma_{3-n}^{a}\left(K_{n}\right)=2 \\
\geq & \gamma_{1-n}^{a}\left(K_{n}\right)=1 .
\end{aligned}
$$

Therefore, for every $k \in\{1-n, \ldots, n-1\}$, and for every $r \in\left\{0, \ldots, \frac{k+n-1}{2}\right\}$,

$$
\begin{equation*}
\gamma_{k-2 r}^{a}\left(K_{n}\right)+r=\gamma_{k}^{a}\left(K_{n}\right) \tag{5}
\end{equation*}
$$

Moreover, notice that for every $k \in\{1-n, \ldots, n-1\}, \gamma_{k}^{a}\left(K_{n}\right)=\left\lceil\frac{n+k+1}{2}\right\rceil$.
It was shown in [9] that

$$
\begin{equation*}
\frac{\sqrt{4 n+1}-1}{2} \leq \gamma_{-1}^{a}(\Gamma) \leq n-\left\lceil\frac{d_{n}}{2}\right\rceil \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{n} \leq \gamma_{0}^{a}(\Gamma) \leq n-\left\lfloor\frac{d_{n}}{2}\right\rfloor . \tag{7}
\end{equation*}
$$

Here we generalize the previous results to defensive k-alliances.
Theorem 2. For any graph $\Gamma, \frac{\sqrt{4 n+k^{2}}+k}{2} \leq \gamma_{k}^{a}(\Gamma) \leq n-\left\lfloor\frac{d_{n}-k}{2}\right\rfloor$.
Proof. If $d_{n} \leq k$, then $\gamma_{k}^{a}(\Gamma) \leq n \leq n-\left\lfloor\frac{d_{n}-k}{2}\right\rfloor$. Otherwise, consider $u \in V$ such that $\delta(u) \geq\left\lfloor\frac{d_{n}+d_{1}}{2}\right\rfloor$. Let $X \subset V$ be the set of neighbors u has in $\Gamma, X=\{w \in V: w \sim u\}$. Let $Y \subset X$ be a vertex set such that $|Y|=\left\lfloor\frac{d_{n}-k}{2}\right\rfloor$. In such a case, the set $V-Y$ is a global defensive k-alliance in Γ. That is, $V-Y$ is a dominating set and for every $v \in V-Y$ we have $\frac{\delta(v)-k}{2} \geq\left\lfloor\frac{d_{n}-k}{2}\right\rfloor \geq \delta_{Y}(v)$. Therefore, $\gamma_{k}^{a}(\Gamma) \leq n-\left\lfloor\frac{d_{n}-k}{2}\right\rfloor$.

On the other hand, let $S \subseteq V$ be a dominating set in Γ. Then,

$$
\begin{equation*}
n-|S| \leq \sum_{v \in S} \delta_{\bar{S}}(v) \tag{8}
\end{equation*}
$$

Moreover, if S is a defensive k-alliance in Γ,

$$
\begin{equation*}
k|S|+\sum_{v \in S} \delta_{\bar{S}}(v) \leq \sum_{v \in S} \delta_{S}(v) \leq|S|(|S|-1) . \tag{9}
\end{equation*}
$$

Hence, solving

$$
\begin{equation*}
0 \leq|S|^{2}-k|S|-n \tag{10}
\end{equation*}
$$

we deduce the lower bound.
The upper bound is attained, for instance, for the complete graph $\Gamma=K_{n}$ for every $k \in\{1-n, \ldots, n-1\}$. The lower bound is attained, for instance, for the 3-cube graph $\Gamma=Q_{3}$, in the following cases: $2 \leq \gamma_{-3}^{a}\left(Q_{3}\right)$ and $4 \leq \gamma_{1}\left(Q_{3}\right)=\gamma_{0}\left(Q_{3}\right)$.

It was shown in [9] that for any bipartite graph Γ of order n and maximum degree d_{1},

$$
\gamma_{-1}^{a}(\Gamma) \geq\left\lceil\frac{2 n}{d_{1}+3}\right\rceil \quad \text { and } \quad \gamma_{0}^{a}(\Gamma) \geq\left\lceil\frac{2 n}{d_{1}+2}\right\rceil
$$

Here we generalize the previous bounds to defensive k-alliances. Moreover, we show that the result is not restrictive to the case of bipartite graphs.
Theorem 3. For any graph $\Gamma, \gamma_{k}^{a}(\Gamma) \geq\left\lceil\frac{n}{\left[\frac{d_{1}-k}{2}\right]+1}\right\rceil$.
Proof. If S denotes a defensive k-alliance in Γ, then

$$
d_{1} \geq \delta(v) \geq 2 \delta_{\bar{S}}(v)+k, \quad \forall v \in S
$$

Therefore,

$$
\begin{equation*}
\left\lfloor\frac{d_{1}-k}{2}\right\rfloor \geq \delta_{\bar{S}}(v), \quad \forall v \in S \tag{11}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
|S|\left\lfloor\frac{d_{1}-k}{2}\right\rfloor \geq \sum_{v \in S} \delta_{\bar{S}}(v) \tag{12}
\end{equation*}
$$

Moreover, if S is a dominating set, S satisfies inequality (8). The result follows by (8) and (12).
The above bound is tight. For instance, for the Petersen graph the bound is attained for every k : $3 \leq \gamma_{-3}^{a}(\Gamma)$, $4 \leq \gamma_{-2}^{a}(\Gamma)=\gamma_{-1}^{a}(\Gamma), 5 \leq \gamma_{0}(\Gamma)=\gamma_{1}(\Gamma)$ and $10 \leq \gamma_{2}(\Gamma)=\gamma_{3}(\Gamma)$. For the 3-cube graph $\Gamma=Q_{3}$, the above theorem leads to the following exact values of $\gamma_{k}^{a}\left(Q_{3}\right): 2 \leq \gamma_{-3}^{a}\left(Q_{3}\right), 4 \leq \gamma_{0}\left(Q_{3}\right)=\gamma_{1}\left(Q_{3}\right)$ and $8 \leq \gamma_{2}\left(Q_{3}\right)=\gamma_{3}\left(Q_{3}\right)$.

Hereafter, we denote by $\mathcal{L}(\Gamma)=\left(V_{l}, E_{l}\right)$ the line graph of a simple graph Γ. The degree of the vertex $e=\{u, v\} \in V_{l}$ is $\delta(e)=\delta(u)+\delta(v)-2$. If the degree sequence of Γ is $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, then the maximum degree of $\mathcal{L}(\Gamma)$, denoted by Δ_{l}, is bounded by $\Delta_{l} \leq d_{1}+d_{2}-2$.

Corollary 4. For any graph Γ of size m and maximum degrees $d_{1} \geq d_{2}$,

$$
\gamma_{k}^{a}(\mathcal{L}(\Gamma)) \geq\left\lceil\frac{m}{\left\lfloor\frac{d_{1}+d_{2}-2-k}{2}\right\rfloor+1}\right\rceil
$$

The above bound is attained for $k \in\{-3,-2,-1,2,3\}$ in the case of the complete bipartite graph $\Gamma=K_{1,4}$. Notice that $\mathcal{L}\left(K_{1,4}\right)=K_{4}$ and $\gamma_{-3}^{a}\left(K_{4}\right)=1, \gamma_{-2}^{a}\left(K_{4}\right)=\gamma_{-1}^{a}\left(K_{4}\right)=2, \gamma_{2}^{a}\left(K_{4}\right)=\gamma_{3}^{a}\left(K_{4}\right)=4$.

In the case of cubic graphs ${ }^{1} \gamma(\Gamma)=\gamma_{-3}^{a}(\Gamma) \leq \gamma_{-2}^{a}(\Gamma)=\gamma_{-1}^{a}(\Gamma) \leq \gamma_{0}^{a}(\Gamma)=\gamma_{1}^{a}(\Gamma) \leq \gamma_{2}^{a}(\Gamma)=\gamma_{3}^{a}(\Gamma)=n$. So, in this case we only study, $\gamma_{-1}^{a}(\Gamma)$ and $\gamma_{0}^{a}(\Gamma)$.

Theorem 5. For any cubic graph $\Gamma, \gamma_{-1}^{a}(\Gamma) \leq 2 \gamma(\Gamma)$.

[^1]Proof. Let S be a dominating set of minimum cardinality in Γ. Let $X \subseteq S$ be the set composed by all $v_{i} \in S$ such that $\delta_{S}\left(v_{i}\right)=0$. For each $v_{i} \in X$ we take a vertex $u_{i} \in \bar{S}$ such that $u_{i} \sim v_{i}$. Let $Y \subseteq \bar{S}$ be defined as $Y=\cup_{v_{i} \in X}\left\{u_{i}\right\}$. Then we have $|Y| \leq \gamma(\Gamma)$ and the set $S \cup Y$ is a global defensive (-1)-alliance in Γ.

The above bound is tight. For instance, in the case of the 3-cube graph we have $\gamma_{-1}^{a}\left(Q_{3}\right)=2 \gamma\left(Q_{3}\right)=4$.
A set $S \subset V$ is a total dominating set if every vertex in V has a neighbor in S. The total domination number $\gamma_{t}(\Gamma)$ is the minimum cardinality of a total dominating set in Γ. Notice that if Γ is a cubic graph, then

$$
\begin{equation*}
\gamma_{-1}^{a}(\Gamma)=\gamma_{t}(\Gamma) \tag{13}
\end{equation*}
$$

It was shown in [5] that if Γ is a connected graph of order $n \geq 3$, then

$$
\begin{equation*}
\gamma_{t}(\Gamma) \leq \frac{2 n}{3} \tag{14}
\end{equation*}
$$

Moreover, by Theorem 3 we have

$$
\begin{equation*}
\frac{n}{3} \leq \gamma_{-1}^{a}(\Gamma) \quad \text { and } \quad \frac{n}{2} \leq \gamma_{0}^{a}(\Gamma) \tag{15}
\end{equation*}
$$

3. Defensive \boldsymbol{k}-alliances in planar graphs

It is well-known that the size of a planar graph Γ of order $n \geq 3$ is bounded by $m \leq 3(n-2)$. Moreover, in the case of triangle-free graphs $m \leq 2(n-2)$. This inequalities allow us to obtain tight bounds for the studied parameters.

Theorem 6. Let $\Gamma=(V, E)$ be a graph of order n. If Γ has a global defensive k-alliance S such that the subgraph $\langle S\rangle$ is planar.
(i) If $n>2(2-k)$, then $|S| \geq\left\lceil\frac{n+12}{7-k}\right\rceil$.
(ii) If $n>2(2-k)$ and $\langle S\rangle$ is a triangle-free graph, then $|S| \geq\left\lceil\frac{n+8}{5-k}\right\rceil$.

Proof. (i) If $|S| \leq 2$, for every $v \in S$ we have $\delta_{\bar{S}}(v) \leq 1-k$. Thus, $n \leq 2(2-k)$. Therefore, $n>2(2-k) \Rightarrow|S|>2$. If $\langle S\rangle$ is planar and $|S|>2$, the size of $\langle S\rangle$ is bounded by

$$
\begin{equation*}
\frac{1}{2} \sum_{v \in S} \delta_{S}(v) \leq 3(|S|-2) \tag{16}
\end{equation*}
$$

If S is a global defensive k-alliance in Γ,

$$
\begin{equation*}
k|S|+(n-|S|) \leq k|S|+\sum_{v \in S} \delta_{\bar{S}}(v) \leq \sum_{v \in S} \delta_{S}(v) . \tag{17}
\end{equation*}
$$

By (16) and (17) the result follows.
(ii) If $\langle S\rangle$ is a triangle-free graph, then

$$
\begin{equation*}
\frac{1}{2} \sum_{v \in S} \delta_{S}(v) \leq 2(|S|-2) \tag{18}
\end{equation*}
$$

The result follows by (17) and (18).
Corollary 7. For any planar graph Γ of order n.
(a) If $n>2(2-k)$, then $\gamma_{k}^{a}(\Gamma) \geq\left\lceil\frac{n+12}{7-k}\right\rceil$.
(b) If $n>2(2-k)$ and Γ is a triangle-free graph, then $\gamma_{k}^{a}(\Gamma) \geq\left\lceil\frac{n+8}{5-k}\right\rceil$.

The above bounds are tight. In the case of the graph of Fig. 1 , the set $S=\{1,2,3\}$ is a global defensive k-alliance for $k=-2, k=-1$ and $k=0$, and Corollary 7(a) leads to $\gamma_{k}^{a}(\Gamma) \geq 3$. Moreover, if $\Gamma=Q_{3}$, the 3-cube graph, Corollary 7(b) leads to the following exact values of $\gamma_{k}^{a}\left(Q_{3}\right): 2 \leq \gamma_{-3}^{a}\left(Q_{3}\right), 4 \leq \gamma_{0}^{a}\left(Q_{3}\right)=\gamma_{1}^{a}\left(Q_{3}\right)$ and $8 \leq \gamma_{3}^{a}\left(Q_{3}\right)$.

Fig. 1.

Fig. 2.
Theorem 8. Let Γ be a graph of order n. If Γ has a global defensive k-alliance S such that the subgraph $\langle S\rangle$ is planar connected with faces. Then,

$$
|S| \geq\left\lceil\frac{n-2 f+4}{3-k}\right\rceil
$$

Proof. By Euler's formula, $\sum_{v \in S} \delta_{S}(v)=2(|S|+f-2)$, and (17) we deduce the result.
In the case of the graph of Fig. 1 , the set $S=\{1,2,3\}$ is a global defensive k-alliance for $k=-1, k=0$ and $k=2$. Moreover, $\langle S\rangle$ has two faces. In such a case, Theorem 8 leads to $|S| \geq 3$.

3.1. Defensive k-alliances in trees

In this section we study global defensive k-alliances in trees but we impose a condition on the number of connected components of the subgraphs induced by the alliances.

Theorem 9. Let T be a tree of order n. Let S be a global defensive k-alliance in T such that the subgraph $\langle S\rangle$ has c connected components. Then,

$$
|S| \geq\left\lceil\frac{n+2 c}{3-k}\right\rceil
$$

Proof. As the subgraph $\langle S\rangle$ is a forest with c connected components,

$$
\begin{equation*}
\sum_{v \in S} \delta_{S}(v)=2(|S|-c) \tag{19}
\end{equation*}
$$

The bound of $|S|$ follows from (17) and (19).
The above bound is attained, for instance, for the left-hand-side graph of Fig. 2, where $S=\{1,2,3,4\}$ is a global defensive (-1)-alliance and $\langle S\rangle$ has two connected components. Moreover, the bound is attained in the case of the right-hand-side graph of Fig. 2, where $S=\{1,2,3,4,5\}$ is a global defensive 0 -alliance and $\langle S\rangle$ has two connected components.

Corollary 10. For any tree T of order $n, \gamma_{k}^{a}(T) \geq\left\lceil\frac{n+2}{3-k}\right\rceil$.
The above bound is attained for $k \in\{-4,-3,-2,0,1\}$ in the case of $\Gamma=K_{1,4}$. As a particular case of the above theorem we obtain the bounds obtained in [9]:

$$
\gamma_{-1}^{a}(T) \geq\left\lceil\frac{n+2}{4}\right\rceil \quad \text { and } \quad \gamma_{0}^{a}(T) \geq\left\lceil\frac{n+2}{3}\right\rceil
$$

4. Global connected defensive \boldsymbol{k}-alliances

It is clear that a defensive k-alliance of minimum cardinality must induce a connected subgraph. But we can have a global defensive k-alliance of minimum cardinality with nonconnected induced subgraph. We say that a defensive k-alliance S is connected if $\langle S\rangle$ is connected. We denote by $\gamma_{k}^{c a}(\Gamma)$ the minimum cardinality of a global connected defensive k-alliance in Γ. Obviously, $\gamma_{k}^{c a}(\Gamma) \geq \gamma_{k}^{a}(\Gamma)$. For instance, for the left-hand-side graph of Fig. 2 we have $\gamma_{-1}^{c a}(\Gamma)=5>4=\gamma_{-1}^{a}(\Gamma)$ and for the right-hand-side graph of Fig. 2 we have $\gamma_{0}^{c a}(\Gamma)=6>5=\gamma_{0}^{a}(\Gamma)$.

Theorem 11. For any connected graph Γ of diameter $D(\Gamma)$,
(i) $\gamma_{k}^{c a}(\Gamma) \geq\left\lceil\frac{\sqrt{4(D(\Gamma)+n-1)+(1-k)^{2}}+(k-1)}{2}\right]$.
(ii) $\gamma_{k}^{c a}(\Gamma) \geq\left\lceil\frac{n+D(\Gamma)-1}{\left[\frac{\Delta-k}{2}\right]+2}\right\rceil$.

Proof. If S is a dominating set in Γ such that $\langle S\rangle$ is connected, then $D(\Gamma) \leq D(\langle S\rangle)+2$. Hence,

$$
\begin{equation*}
D(\Gamma) \leq|S|+1 \tag{20}
\end{equation*}
$$

Moreover, if S is a global defensive k-alliance in Γ, then $|S|$ satisfies (10). The first result follows by (10) and (20).
As a consequence of (8), (11) and (20) we obtain the second result.
Both bounds in Theorem 11 are tight. For instance, both bounds are attained for $k \in\{-2,-1,0\}$ for the graph of Fig. 1. In such a case, both bounds lead to $\gamma_{k}^{c a}(\Gamma) \geq 3$. Moreover, both bounds lead to the exact values of $\gamma_{k}^{c a}\left(K_{3,3}\right)$ in the following cases: $2 \leq \gamma_{-3}^{c a}\left(K_{3,3}\right)=\gamma_{-2}^{c a}\left(K_{3,3}\right)=\gamma_{-1}^{c a}\left(K_{3,3}\right)$. Furthermore, notice that bound (ii) leads to the exact values of $\gamma_{k}^{c a}\left(Q_{3}\right)$ in the cases $4 \leq \gamma_{0}^{c a}\left(Q_{3}\right)=\gamma_{1}^{c a}\left(Q_{3}\right)$, while bound (i) only gives $3 \leq \gamma_{0}^{a}\left(Q_{3}\right)$ and $3 \leq \gamma_{1}^{c a}\left(Q_{3}\right)$.

By Theorem 11, and taking into account that $D(\Gamma)-1 \leq D(\mathcal{L}(\Gamma))$, we obtain the following result on the global connected k-alliance number of the line graph of Γ in terms of some parameters of Γ.

Corollary 12. For any connected graph Γ of size m, diameter $D(\Gamma)$, and maximum degrees $d_{1} \geq d_{2}$,
(i) $\gamma_{k}^{c a}(\mathcal{L}(\Gamma)) \geq\left\lceil\frac{\sqrt{4(D(\Gamma)+m-2)+(1-k)^{2}}-(1-k)}{2}\right\rceil$.
(ii) $\gamma_{k}^{c a}(\mathcal{L}(\Gamma)) \geq\left\lceil\frac{2(m+D(\Gamma)-2)}{d_{1}+d_{2}-k+1}\right\rceil$.

References

[1] A. Cami, H. Balakrishnan, N. Deo, R.D. Dutton, On the complexity of finding optimal global alliances, J. Combin. Math. Combin. Comput. 58 (2006) 23-31.
[2] R.C. Brigham, R.D. Dutton, S.T. Hedetniemi, A sharp lower bound on the powerful alliance number of $C_{m} \times C_{n}$, Congr. Numer. 167 (2004) 57-63.
[3] R.C. Brigham, R.D. Dutton, T.W. Haynes, S.T. Hedetniemi, Powerful alliances in graphs, Discrete Appl. Math. (in press).
[4] M. Chellali, T. Haynes, Global alliances and independence in trees, Discuss. Math. Graph Theory 27 (1) (2007) 19-27.
[5] E.J. Cockayne, R. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-215.
[6] O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar, R.D. Skaggs, Offensive alliances in graphs, Discuss. Math. Graph Theory 24 (2) (2004) 263-275.
[7] H. Fernau, D. Raible, Alliances in graphs: A complexity-theoretic study, SOFSEM 2 (2007) 61-70.
[8] G.H. Fricke, L.M. Lawson, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, A note on defensive alliances in graphs, Bull. Inst. Combin. Appl. 38 (2003) 37-41.
[9] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003) $139-146$.
[10] L.H. Jamieson, S.T. Hedetniemi, A.A. McRae, The algorithmic complexity of alliances in graphs, J. Combin. Math. Combin. Comput. (2007) (in press).
[11] L.H. Jamieson, Algorithms and complexity for alliances and weighted alliances of different types, Ph.D. Thesis, Clemson University, 2007.
[12] P. Kristiansen, S.M. Hedetniemi, S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) $157-177$.
[13] J.A. Rodríguez, J.M. Sigarreta, Offensive alliances in cubic graphs, Internat. Math. Forum 1 (36) (2006) 1773-1782.
[14] J.A. Rodríguez, J.M. Sigarreta, Spectral study of alliances in graphs, Discuss. Math. Graph Theory 27 (1) (2007) $143-157$.
[15] J.A. Rodríguez-Velázquez, J.M. Sigarreta, Global offensive alliances in graphs, Electron. Notes Discrete Math. 25 (2006) $157-164$.
[16] J.A. Rodríguez-Velázquez, J.M. Sigarreta, Global alliances in planar graphs, AKCE Int. J. Graphs Comb. 4 (1) (2007) 83-98.
[17] J.A. Rodríguez-Velázquez, I.G. Yero, J.M. Sigarreta, Defensive k-alliances in graphs, Appl. Math. Lett. (in press).
[18] K.H. Shafique, R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congr. Numer. 162 (2003) $139-146$.
[19] K.H. Shafique, R. Dutton, A tight bound on the cardinalities of maximum alliance-free and minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006) 139-145.
[20] K.H. Shafique, Partitioning a graph in alliances and its application to data clustering. Ph.D. Thesis, 2004.
[21] K.H. Shafique, R.D. Dutton, On satisfactory partitioning of graphs, Congr. Numer. 154 (2002) 183-194.
[22] J.M. Sigarreta, J.A. Rodríguez, On defensive alliance and line graphs, Appl. Math. Lett. 19 (12) (2006) 1345-1350.
[23] J.M. Sigarreta, J.A. Rodríguez, On the global offensive alliance number of a graph, Discrete Appl. Math. 157 (2) (2009) $219-226$.

[^0]: * Corresponding author.

 E-mail addresses: juanalberto.rodriguez@urv.cat (J.A. Rodríguez-Velázquez), josemaria.sigarreta@uc3m.es (J.M. Sigarreta).

[^1]: ${ }^{1}$ A cubic graph is a 3-regular graph.

