48,355 research outputs found

    Inertial Energy Storage for Spacecraft

    Get PDF
    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions

    The Non-Mesonic Weak Decay of Double-Lambda Hypernuclei: A Microscopic Approach

    Get PDF
    The non--mesonic weak decay of double--Λ\Lambda hypernuclei is studied within a microscopic diagrammatic approach. Besides the nucleon--induced mechanism, ΛN→nN\Lambda N\to nN, widely studied in single--Λ\Lambda hypernuclei, additional hyperon--induced mechanisms, ΛΛ→Λn\Lambda \Lambda\to \Lambda n, ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^-p, are accessible in double--Λ\Lambda hypernuclei and are investigated here. As in previous works on single--Λ\Lambda hypernuclei, we adopt a nuclear matter formalism extended to finite nuclei via the local density approximation and a one--meson exchange weak transition potential (including the ground state pseudoscalar and vector octets mesons) supplemented by correlated and uncorrelated two--pion--exchange contributions. The weak decay rates are evaluated for hypernuclei in the region of the experimentally accessible light hypernuclei ΛΛ10^{10}_{\Lambda\Lambda}Be and ΛΛ13^{13}_{\Lambda\Lambda}B. Our predictions are compared with a few previous evaluations. The rate for the ΛΛ→Λn\Lambda \Lambda\to \Lambda n decay is dominated by KK--, K∗K^*-- and η\eta--exchange and turns out to be about 2.5\% of the free Λ\Lambda decay rate, ΓΛfree\Gamma_{\Lambda}^{\rm free}, while the total rate for the ΛΛ→Σ0n\Lambda \Lambda\to \Sigma^0 n and ΛΛ→Σ−p\Lambda \Lambda\to \Sigma^- p decays, dominated by π\pi--exchange, amounts to about 0.25\% of ΓΛfree\Gamma_{\Lambda}^{\rm free}. The experimental measurement of these decays would be essential for the beginning of a systematic study of the non--mesonic decay of strangeness −2-2 hypernuclei. This field of research could also shed light on the possible existence and nature of the HH--dibaryon.Comment: 17 pages, 2 figure

    Algorithm for heart rate extraction in a novel wearable acoustic sensor.

    Get PDF
    Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds - S1 and S2 - that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring

    Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Full text link
    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.Comment: 12 pages and 3 figures in postscrip

    Magnetically suspended flywheel system study

    Get PDF
    A program to study the application of a graphite/epoxy, magnetically suspended, pierced disk flywheel for the combined function of spacecraft attitude control and energy storage (ACES) is described. Past achievements of the program include design and analysis computer codes for the flywheel rotor, a magnetically suspended flywheel model, and graphite/epoxy rotor rings that were successfully prestressed via interference assembly. All hardware successfully demonstrated operation of the necessary subsystems which form a complete ACES design. Areas of future work include additional rotor design research, system definition and control strategies, prototype development, and design/construction of a UM/GSFC spin test facility. The results of applying design and analysis computer codes to a magnetically suspended interference assembled rotor show specific energy densities of 42 Wh/lb (92.4 Wh/kg) are obtained for a 1.6 kWh system

    Assessment of flywheel energy storage for spacecraft power systems

    Get PDF
    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction
    • …
    corecore