1,224 research outputs found

    The contribution of Narrow-Line Seyfert 1 galaxies to the soft X-ray background

    Get PDF
    The ROSAT Ultradeep HRI survey in the Lockman Hole contains a complete sample of 91 X-ray sources with fluxes in the 0.5-2 keV band larger than 1.2 times 10e-15 erg cm-2 s-1, where over about 75 per cent of the sources are quasars or Seyfert galaxies. During the course of our optical identification work, we have obtained optical spectra of 67 narrow emission line galaxies (NELG), which are physically not associated with the X-ray sources. We have derived the equivalent width (EW) and the full width at half maximum (FWHM) for the most prominent emission lines of 41 quasars and Seyfert galaxies taken from the ROSAT Deep Survey (RDS), which has a flux limit of 5.5 times 10e-15 erg cm-2 s-1 in the 0.5-2.0 keV band. Furthermore we have obtained the EW and FWHM values of the field NELGs. Here we present the spectroscopic discrimination between RDS Seyfert galaxies and field galaxies (NELG). The analysis of the emission lines has revealed that a single object out of 69 spectroscopically identified AGN fits the optical criteria of Narrow-Line Seyfert 1 galaxies (NLS1). This may indicate that NLS1 contribute only marginally to the soft X-ray background, but we can not exclude a possible larger contribution.Comment: Invited talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Electronic Structure of Calcium Hexaboride within the Weighted Density Approximation

    Full text link
    We report calculations of the electronic structure of CaB6_6 using the weighted density approximation (WDA) to density functional theory. We find a semiconducting band structure with a sizable gap, in contrast to local density approximation (LDA) results, but in accord with recent experimental data. In particular, we find an XX-point band gap of 0.8 eV. The WDA correction of the LDA error in describing the electronic structure of CaB6_6 is discussed in terms of the orbital character of the bands and the better cancelation of self-interactions within the WDA.Comment: 1 figur

    Anomalous NMR Spin-Lattice Relaxation in SrB_{6} and Ca_{1-x}La_{x}B_{6}

    Get PDF
    We report the results of {11}B nuclear magnetic resonance (NMR) measurements of SrB_{6} and Ca_{0.995}La_{0.05}B_{6} below room temperature. Although the electrical resistivities of these two materials differ substantially, their {11}B-NMR responses exhibit some strikingly common features. Both materials exhibit ferromagnetic order, but their {11}B-NMR spectra reveal very small hyperfine fields at the Boron sites. The spin lattice relaxation T_{1}^{-1} varies considerably with external field but changes with temperature only below a few K. We discuss these unusual results by considering various different scenarios for the electronic structure of these materials.Comment: Accepted for publication in Phys. Rev. B Rapid communication, 4 pages, 3 figures. This manuscript replaces an earlier version and includes some minor changes in the text and in Fig.

    Theory of High \tc Ferromagnetism in SrB6SrB_6 family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase

    Full text link
    Doped divalent hexaborides such as Sr1xLaxB6Sr_{1-x}La_xB_6 exhibit high \tc ferromagnetism. We isolate a degenerate pair of 2p2p-orbitals of boron with two valence electrons, invoke electron correlation and Hund coupling, to suggest that the undoped state is better viewed as a spin-1 Mott insulator; it is predicted to be a type of 3d Haldane gap phase with a spin gap 0.1eV\sim 0.1 eV, much smaller than the charge gap of >1.0eV > 1.0 eV seen in ARPES. The experimentally seen high \tc `ferromagnetism' is argued to be a complex magnetic order in disguise - either a canted 6-sublattice AFM (1200\approx 120^0) order or its quantum melted version, a chiral spin liquid state, arising from a type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde

    Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)

    Full text link
    Ferromagnetism has been reported recently in La-doped alkaline-earth hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity, Hall resistivity, and magnetization measurements of A1-xLaxB6. The results indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no signature of an excitonic state as suggested by several theories. It is also found that the surface of as-grown samples (10 micrometer in thickness) has a different electronic structure from a bulk one, and a fairly large number of paramagnetic moments are confined in this region. After eliminating these paramagnetic moments at the surface, we could not find any evidence of an intrinsic ferromagnetic moment in our samples, implying the possibility that the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure

    Fermi Surface Measurements on the Low Carrier Density Ferromagnet Ca1-xLaxB6 and SrB6

    Get PDF
    Recently it has been discovered that weak ferromagnetism of a dilute 3D electron gas develops on the energy scale of the Fermi temperature in some of the hexaborides; that is, the Curie temperature approximately equals the Fermi temperature. We report the results of de Haas-van Alphen experiments on two concentrations of La-doped CaB6 as well as Ca-deficient Ca1-dB6 and Sr-deficient Sr1-dB6. The results show that a Fermi surface exists in each case and that there are significant electron-electron interactions in the low density electron gas.Comment: 4 pages, 5 figures, submitted to PR

    Holographic flavor on the Higgs branch

    Get PDF
    In this paper we study the holographic dual, in several spacetime dimensions, of the Higgs branch of gauge theories with fundamental matter. These theories contain defects of various codimensionalities, where the matter fields are located. In the holographic description the matter is added by considering flavor brane probes in the supergravity backgrounds generated by color branes, while the Higgs branch is obtained when the color and flavor branes recombine with each other. We show that, generically, the holographic dual of the Higgs phase is realized by means of the addition of extra flux on the flavor branes and by choosing their appropriate embedding in the background geometry. This suggests a dielectric interpretation in terms of the color branes, whose vacuum solutions precisely match the F- and D-flatness conditions obtained on the field theory side. We further compute the meson mass spectra in several cases and show that when the defect added has codimension greater than zero it becomes continuous and gapless.Comment: 59 pages, 1 figure;v2: references adde

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation
    corecore