22 research outputs found

    Caracterización y proyección de grupo etario del municipio de Apulo Cundinamarca, para el diseño arquitectónico de un C.D.I. y el diseño estructural de un Centro Vida

    Get PDF
    El presente proyecto tiene el objetivo de realizar un diseño arquitectónico de un Centro de Desarrollo Infantil y el diseño arquitectónico y estructural de un Centro Vida, para el municipio de Apulo Cundinamarca; el área de estas dos edificaciones institucionales se establece después de realizar el análisis de los datos demográficos obtenidos después del proceso de caracterización y proyección de población. Para realizar la caracterización de la población se consultaron las bases de datos demográficas que tiene el municipio, dentro de las diferentes bases de datos que maneja la administración municipal se decide extraer la información de la base de datos del SISBEN, ya que esta era la más actualizada y la que contenía mayor número de personas. Se filtraron los datos demográficos en dos grupos etarios, el primero el de la primera infancia que pertenece a la población que está en el rango de edades de 0 a 5 años, y el segundo el del adulto mayor que pertenece a la población mayor de 60 años o en casos de que la persona sufra de alguna discapacidad entran a esta clasificación de “adulto mayor” desde los 55 años. Con los datos recolectados se realiza el cálculo de muestra estratificada y se diseña un cuestionario de preguntas para cada grupo etario, esta muestra estratificada permite saber el número de personas a las cuales se les debe de hacer la encuesta, para que los resultados representen lo más acertadamente el comportamiento de la población total. Después de esto se tabulan las respuestas de las encuestas y se realiza un respectivo análisis para cada grupo etario, en donde se dejan varias recomendaciones al municipio para la solución de diferentes problemáticas identificadas. Teniendo los datos demográficos de los dos grupos etarios, se realiza la proyección de la población a 20 años, permitiendo conocer el número de niños en edades de 0 a 5 años y el número de adultos mayores de más de 60 años, que vivirán en el municipio en el año 2040 y cuantos de ellos posiblemente hará uso de las edificaciones. Conociendo la cantidad de personas que harán uso de los servicios que ofrecen el C.D.I y el Centro Vida, se determina la capacidad que debe de tener cada una de las dos edificaciones. Con el número de personas que harán uso de cada edificación se procede a determinar los espacios que deben tener cada estructura y el área mínima con la que debe contar cada espacio; estas áreas mínimas las establece el Ministerio de Educación Nacional, junto con el ICBF (Instituto Colombiano de Bienestar Familiar) para el caso de los C.D.I, y para el Centro Vida se tomaron recomendaciones y reglamentos internacionales como lo es el documento de la Organización Iberoamericana de Seguridad Social (OISS). Después del proceso anteriormente descrito se procede a realizar los diseños de cada una de las edificaciones de uso institucional, lo primero que se realiza es la identificación del predio en donde se va a proyectar la construcción. Después de tener identificado el predio se procede a realizar el levantamiento topográfico del mismo, obteniendo como resultado el plano topográfico. Teniendo los planos de las características morfológicas del terreno, se procede a realizar el diseño urbanístico y arquitectónico del Centro de Desarrollo Infantil y el diseño urbanístico, arquitectónico, estructural y despieces estructurales del Centro Vida. El diseño urbanístico se realizará acorde con lo estipulado en el Esquema de Ordenamiento Territorial del año 2000 del municipio de Apulo Cundinamarca, el diseño arquitectónico de las dos edificaciones se realizará acorde a lo establecido por las entidades mencionadas anteriormente y el diseño estructural junto con los despieces estructurales de cada elemento estructural se realizarán acorde con lo estipulado en el reglamento colombiano NSR10

    Línea de investigación en Helicobacter pylori para la formación de recurso humano en ciencia, tecnología e innovación en el programa de microbiología

    Get PDF
    Este libro nace de la unión de un maestro altamente calificado y alumnos dedicados con unas creatividades activas y dispuestas a trabajar por resolver los problemas que trae una bacteria a la humanidad. Las investigaciones aquí consignadas son producto de los trabajos de grado de los estudiantes del programa de Microbiología, quienes además fueron miembros del semillero de investigación, MICROORGANISMOS DE IMPORTANCIA EN SALUD HUMANA Y ANIMAL “OBVIO-MICROBIO”. Apoyados y dirigidos por la doctora Adalucy Alvarez-Aldana, quien gracias a su amplio conocimiento en el microorganismo supo sembrar curiosidad sobre el mismo durante las sesiones del semillero, incentivando a muchos de sus alumnos a dedicar su trabajo de grado a resolver alguna pregunta que les surgiera en torno a este microorganismo. Aunque diferentes son las investigaciones, todas fueron trazadas con un fin común, entregarle a la humanidad un poco más de conocimiento sobre Helicobacter pylori, por esto la unión de estas investigaciones en una sola consigna, son importantes para entender más sobre todo lo que rodea esta bacteria y pretenden resolver muchos misterios que aún aquejan la epidemiología detrás de la misma. Estos trabajos son fruto de muchos esfuerzos, materiales y académicos, de personas grandiosas, de la unión de universidades, doctores y docentes de diferentes disciplinas, razón que demuestra una vez más que la unión hace la fuerza, porque solo llegarás más rápido, pero en compañía llegarás más lejos. Además, contamos con la fortuna de tener un capitulo invitado, cuyo tema no es sobre Helicobacter pylori, pero si un sobre un tópico de gran interes en la actualidad como es la resistencia bacteriana. Capitulo titulado: “Caracterización epidemiológica y microbiológica de las bacteriemias y su perfil de resistencia durante el periodo junio 2011 a junio 2015”

    Empowering Latina scientists

    No full text

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0-4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2-6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore