3,357 research outputs found

    Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation

    Get PDF
    • Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. • Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. • Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. • Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias

    Observable Unruh Effect and Unmasked Unruh Radiation

    Get PDF
    The Unruh effect, thereby an ideally accelerated quantum detector is predicted to absorb thermalized virtual photons and re-emit real photons, is significantly extended for laboratory accessible configurations. Using modern influence functional techniques, we obtain explicit expressions describing the excitation and relaxation of the quantum levels of an Unruh detector as a general noninertial open quantum system. Remarkably, for controllable periodical motions, an exact master equation is found for the Unruh detector within the prevailing framework of quantum optics with a well-defined Unruh temperature for given acceleration (α\alpha), acceleration frequency (ωα\omega_\alpha), and transition frequency (ω0\omega_0) of the detector. We further show that the measurable Unruh temperatures and corresponding transition rates are comparable or higher than their values for the ideally accelerated cases if cω0c\omega_0 and cωαc\omega_\alpha have similar orders of magnitude as α\alpha. This allows us to select the transition rates of the detector to unmask Unruh radiation against Larmor radiation which has been a major competing noise. Our work suggests experiments with such settings may directly confirm the Unruh effect within the current technology, based on which a laboratory test of black hole thermodynamics will become possible.Comment: 6 pages, 3 figure

    Inflammation subtypes in psychosis and their relationships with genetic risk for psychiatric and cardiometabolic disorders

    Get PDF
    Cardiometabolic disorders have known inflammatory implications, and peripheral measures of inflammation and cardiometabolic disorders are common in persons with psychotic disorders. Inflammatory signatures are also related to neurobiological and behavioral changes in psychosis. Relationships between systemic inflammation and cardiometabolic genetic risk in persons with psychosis have not been examined. Thirteen peripheral inflammatory markers and genome-wide genotyping were assessed in 122 participants (n = 86 psychosis, n = 36 healthy controls) of European ancestry. Cluster analyses of inflammatory markers classified higher and lower inflammation subgroups. Single-trait genetic risk scores (GRS) were constructed for each participant using previously reported GWAS summary statistics for the following traits: schizophrenia, bipolar disorder, major depressive disorder, coronary artery disease, type-2 diabetes, low-density lipoprotein, high-density lipoprotein, triglycerides, and waist-to-hip ratio. Genetic correlations across traits were quantified. Principal component (PC) analysis of the cardiometabolic GRSs generated six PC loadings used in regression models to examine associations with inflammation markers. Functional module discovery explored biological mechanisms of the inflammation association of cardiometabolic GRS genes. A subgroup of 38% persons with psychotic disorders was characterized with higher inflammation status. These higher inflammation individuals had lower BACS scores (p = 0.038) compared to those with lower inflammation. The first PC of the cardiometabolic GRS matrix was related to higher inflammation status in persons with psychotic disorders (OR = 2.037, p = 0.001). Two of eight modules within the functional interaction network of cardiometabolic GRS genes were enriched for immune processes. Cardiometabolic genetic risk may predispose some individuals with psychosis to elevated inflammation which adversely impacts cognition associated with illness

    Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania

    Get PDF
    Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude. Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively. Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data

    Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors

    Get PDF
    The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors
    corecore