40,920 research outputs found

    Elastomer Compound Developed for High Wear Applications

    Get PDF
    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound

    Assessment of flywheel energy storage for spacecraft power systems

    Get PDF
    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction

    Casimir forces in the time domain II: Applications

    Full text link
    Our preceding paper introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this manuscript, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir piston-like problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of PML absorbing boundaries and/or periodic boundaries. In addition we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.Comment: 11 pages, 12 figures. Includes additional examples (dispersive materials and fully three-dimensional systems

    Berezinskii-Kosterlitz-Thouless Transition in Spin-Charge Separated Superconductor

    Full text link
    A model for spin-charge separated superconductivity in two dimensions is introduced where the phases of the spinon and holon order parameters couple gauge-invariantly to a statistical gauge-field representing chiral spin-fluctuations. The model is analyzed in the continuum limit and in the low-temperature limit. In both cases we find that physical electronic phase correlations show a superconducting-normal phase transition of the Berezinskii-Kosterlitz-Thouless type, while statistical gauge-field excitations are found to be strictly gapless. The normal-to-superconductor phase boundary for this model is also obtained as a function of carrier density, where we find that its shape compares favorably with that of the experimentally observed phase diagram for the oxide superconductors.Comment: 35 pages, TeX, CSLA-P-93-

    A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line-region models

    Full text link
    A bright, soft X-ray source was detected on 2010 July 14 during an XMM--Newton slew at a position consistent with the galaxy GSN 069 (z=0.018). Previous ROSAT observations failed to detect the source and imply that GSN 069 is now >240 times brighter than it was in 1994 in the soft X-ray band. We report here results from a ~1 yr monitoring with Swift and XMM-Newton, as well as from optical spectroscopy. GSN 069 is an unabsorbed, ultra-soft source in X-rays, with no flux detected above ~1 keV. The soft X-rays exhibit significant variability down to timescales of hundreds of seconds. The UV-to-X-ray spectrum of GSN 069 is consistent with a pure accretion disc model which implies an Eddington ratio of ~0.5 and a black hole mass of ~ 1.2 million solar masses. A new optical spectrum, obtained ~3.5 months after the XMM-Newton slew detection, is consistent with earlier spectra and lacks any broad line component, classifying the source as a Seyfert 2 galaxy. The lack of cold X-ray absorption and the short timescale variability in the soft X-rays rule out a standard Seyfert 2 interpretation of the X-ray data. We discuss our results within the framework of two possible scenarios for the broad-line-region (BLR) in AGN, namely the two-phase model (cold BLR clouds in pressure equilibrium with a hotter medium), and models in which the BLR is part of an outflow, or disc-wind. Finally, we point out that GSN 069 may be a member of a population of super-soft AGN whose SED is completely dominated by accretion disc emission, as it is the case in some black hole X-ray binary transients during their outburst evolution. The disc emission for a typical AGN with larger black hole mass than GSN 069 does not enters the soft X-ray band, so that GSN 069-like objects would likely be missed by current X-ray surveys, or mis-classified as Compton-thick candidates. (ABRIDGED)Comment: Accepted for publication in MNRA

    Virtual Data in CMS Analysis

    Full text link
    The use of virtual data for enhancing the collaboration between large groups of scientists is explored in several ways: - by defining ``virtual'' parameter spaces which can be searched and shared in an organized way by a collaboration of scientists in the course of their analysis; - by providing a mechanism to log the provenance of results and the ability to trace them back to the various stages in the analysis of real or simulated data; - by creating ``check points'' in the course of an analysis to permit collaborators to explore their own analysis branches by refining selections, improving the signal to background ratio, varying the estimation of parameters, etc.; - by facilitating the audit of an analysis and the reproduction of its results by a different group, or in a peer review context. We describe a prototype for the analysis of data from the CMS experiment based on the virtual data system Chimera and the object-oriented data analysis framework ROOT. The Chimera system is used to chain together several steps in the analysis process including the Monte Carlo generation of data, the simulation of detector response, the reconstruction of physics objects and their subsequent analysis, histogramming and visualization using the ROOT framework.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages, LaTeX, 7 eps figures. PSN TUAT010. V2 - references adde

    Achieving a Strongly Temperature-Dependent Casimir Effect

    Get PDF
    We propose a method of achieving large temperature sensitivity in the Casimir force that involves measuring the stable separation between dielectric objects immersed in fluid. We study the Casimir force between slabs and spheres using realistic material models, and find large > 2nm/K variations in their stable separations (hundreds of nanometers) near room temperature. In addition, we analyze the effects of Brownian motion on suspended objects, and show that the average separation is also sensitive to changes in temperature . Finally, this approach also leads to rich qualitative phenomena, such as irreversible transitions, from suspension to stiction, as the temperature is varied

    Cooper-pair coherence in a superfluid Fermi-gas of atoms

    Full text link
    We study the coherence properties of a trapped two-component gas of fermionic atoms below the BCS critical temperature. We propose an optical method to investigate the Cooper-pair coherence across different regions of the superfluid. Near-resonant laser light is used to induce transitions between the two coupled hyperfine states. The beam is split so that it probes two spatially separate regions of the gas. Absorption of the light in this interferometric scheme depends on the Cooper-pair coherence between the two regions.Comment: 10 pages, 5 figures. Submitted to J. Phys. B as a proceedings of the Salerno 2001 BEC worksho
    corecore