43 research outputs found

    Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes

    Get PDF
    We investigate the possibility of stabilising oil-water emulsions from the polyelectrolyte complexes (PEC) obtained in mixtures of a strong cationic polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC) and a weak anionic one (poly(acrylic acid) sodium salt, PAANa). Unlike other previous work however, both polyelectrolytes (PEL) are chosen as they are completely water-soluble and possess no surface activity when present alone over nearly all the pH range. In water, the effects of PEL concentration, PEL mixing ratio and pH on the formation of PEC are studied in detail. At low pH where the anionic PEL is uncharged, complex coacervation occurs in which droplets rich in both polymers are dispersed in water. At intermediate pH, the PEC comprise a mixture of coacervate droplets and solid particles. At high pH where the anionic PEL is significantly charged, only complex coacervation is observed. On addition of dodecane followed by homogenisation, no stable emulsions arose from dispersions containing solid particle PEC due to either the large precursor particle aggregates or their inherent hydrophilicity. By contrast, oil-in-water emulsions stable to coalescence could be prepared from coacervate dispersions. We discuss the feasibility of the coacervate phase spreading at the oil-water interface in terms of the relevant spreading coefficients and compare the predictions with experiment for a range of oils. We encounter oils whose drops become engulfed by the coacervate phase as well as oils where no engulfing occurs

    Capsules from Pickering emulsion templates

    Get PDF
    Following the resurgence of interest in particle-stabilised or Pickering emulsions recently, the preparation of capsules from such templates has become feasible. We review some of the recent activity in this area and focus on both the methods used to reinforce the particle shell and the applications of these novel capsules, which may be empty or liquid-filled. The methods reported include interfacial polymerisation or crystallisation, interfacial cross-linking, the use of a sacrificial template, formation of polymer layers, gelation and evaporation from multiple emulsions. Potential applications are in the areas of wastewater treatment, perfume encapsulation, drug/dye release and as self-healing coatings

    Catalysis in Pickering emulsions

    Get PDF
    Particle-stabilised or Pickering emulsions are versatile systems. In the past 10 years a new application has emerged in the field of catalysis to use them as vehicles to carry out catalytic reactions, allowing a more environmentally friendly process with high conversions and selectivities and important advantages for catalyst recovery. As the area has advanced rapidly, the intention of this review is to summarize the latest innovations being reported. An overview is given regarding the kinds of liquid phases comprising the emulsion system, the different types of solid particle stabilizers (whether they contain catalyst or not) and the catalytic reactions studied. A section describing methods for recovering the catalyst is also included, in which various stimuli are discussed. Finally, the importance of using Pickering emulsions to carry out reactions in flow and in multi-step cascade systems is highlighted with various examples to support the benefits of transferring this technology to industrial processes

    Emulsions stabilized with polyelectrolyte complexes prepared from a mixture of a weak and a strong polyelectrolyte

    Get PDF
    The possibility of stabilizing emulsions with polyelectrolyte complexes (PEC) obtained from the interaction of two non-surface-active oppositely charged polyelectrolytes (PEL) is described. Poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate) sodium salt are selected as the weak cationic and the strong anionic polyelectrolyte, respectively. Aqueous polymer mixtures are investigated by light scattering to determine the size of the complexes and whether precipitation or complex coacervation occurs. The effects of PEL mixing ratio, pH, and PEL concentration are studied in detail. By increasing the pH, the transition precipitate-precipitate/coacervate-coacervate-polymer solution is observed. At low pH, both PEL are fully ionized and therefore precipitates (soft particles) arise as a result of strong electrostatic interactions. By increasing the pH, the degree of ionization of PAH decreases and weak electrostatic interactions ensue, supporting the formation of coacervate droplets. The most stable oil-in-water emulsions are prepared from aqueous mixtures around charge neutralization. Although emulsions can be prepared from coacervate droplet dispersions, their coalescence stability is worse than those stabilized by soft PEC particles. By increasing the PEL concentration, the average droplet diameter decreases and the fraction of cream in the emulsion increases for emulsions prepared with PEC particles, following the limited coalescence model. However, at high concentrations, emulsion stability is slightly worse probably due to extensive aggregation of the particles. Viscous high internal phase emulsions can be prepared at low pH in which oil droplets are deformed. Here, PEC particles are detected only at the oil-water interface. At lower oil content, excess particles form a network in the aqueous phase aiding emulsion stability to coalescence

    Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions

    Get PDF
    © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Pickering emulsion systems have emerged as platforms for the synthesis of organic molecules in biphasic biocatalysis. Herein, the catalytic performance was evaluated for biotransformation using whole cells exemplified for the dehydration of n-octanaloxime to n-octanenitrile catalysed by an aldoxime dehydratase (OxdB) overexpressed in E. coli. This study was carried out in Pickering emulsions stabilised solely with silica particles of different hydrophobicity. We correlate, for the first time, the properties of the emulsions with the conversion of the reaction, thus gaining an insight into the impact of the particle wettability and particle concentration. When comparing two emulsions of different type with similar stability and droplet diameter, the oil-in-water (o/w) system displayed a higher conversion than the water-in-oil (w/o) system, despite the conversion in both cases being higher than that in a “classic” two-phase system. Furthermore, an increase in particle concentration prior to emulsification resulted in an increase of the interfacial area and hence a higher conversion

    Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes

    Get PDF
    We put forward the concept of a novel particle stabiliser of oil-water emulsions being the polyelectrolyte complex (PEC) formed between oppositely charged water-soluble polymers, in cases where either polymer alone is incapable of stabilising an emulsion. Using poly(4-styrene sulfonate) sodium salt, PSSNa and poly(diallyldimethylammonium chloride), PDADMAC, of low polydispersity and similar molecular mass, we correlate the behaviour of their mixtures in water with that of emulsions after addition of oil. In aqueous mixtures, spherical particles of diameter between 100 and 150 nm are formed through electrostatic interactions between charged polymer chains. Around equal mole fractions of the two polymers, the zeta potential of particles reverses in sign and emulsions of oil-in-water (o/w) for a range of oils can be prepared which are the most stable to coalescence and creaming. Effects of PEC concentration and oil:water ratio have been examined. All emulsions are o/w and stability is achieved by close-packed particle layers at drop interfaces and particle aggregation in the continuous phase. Increasing the salt concentration initially causes destabilisation of the aqueous particle dispersion due to particle aggregation followed by dissolution of particles at high concentrations; the corresponding emulsions change from being stable to completely unstable and are then re-stabilised due to adsorption of uncharged individual polymer molecules

    Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures

    Get PDF
    Defects in endolysosomal and autophagic functions are increasingly viewed as key pathological features of neurodegenerative disorders. A master regulator of these functions is phosphatidylinositol-3-phosphate (PI3P), a phospholipid synthesized primarily by class III PI 3-kinase Vps34. Here we report that disruption of neuronal Vps34 function in vitro and in vivo impairs autophagy, lysosomal degradation as well as lipid metabolism, causing endolysosomal membrane damage. PI3P deficiency also promotes secretion of unique exosomes enriched for undigested lysosomal substrates, including amyloid precursor protein C-terminal fragments (APP-CTFs), specific sphingolipids, and the phospholipid bis(monoacylglycero)phosphate (BMP), which normally resides in the internal vesicles of endolysosomes. Secretion of these exosomes requires neutral sphingomyelinase 2 and sphingolipid synthesis. Our results reveal a homeostatic response counteracting lysosomal dysfunction via secretion of atypical exosomes eliminating lysosomal waste and define exosomal APP-CTFs and BMP as candidate biomarkers for endolysosomal dysfunction associated with neurodegenerative disorders.Fan Wang for the kind gift of the Pi3kc3flox/flox mice. We thank Basant Abdulrahman and Hermann Schaetzl for providing the gene-edited Atg5 KO N2a cells. We are also grateful to Zhenyu Yue, Ralph Nixon, and Jean Gruenberg for the kind gift of anti-Atg14L, Cathepsin D, and BMP antibodies, respectively. We thank Thomas Südhof for sharing Cre recombinase lentiviruses. We thank the OCS Microscopy Core of New York University Langone Medical Center for the support of the EM work and Rocio Perez-Gonzalez and Efrat Levy of New York University for their support during optimization of the brain exosome isolation technique. We thank Elizabeta Micevska for the maintenance and genotyping of the animal colony and Bowen Zhou for the preliminary lipidomic analysis of conditional Pi3kc3 cKO mice. We also thank Rebecca Williams and Catherine Marquer for critically reading the manuscript. This work was supported by grants from the Fundação para a Ciência e Tecnologia (PD/BD/105915/2014 to A.M.M.); the National Institute of Health (R01 NS056049 to G.D.P., transferred to Ron Liem, Columbia University; T32-MH015174 to Rene Hen (Z.M.L.)). Z.M.L. and R.B.C. received pilot grants from ADRC grant P50 AG008702 to S.A.S.info:eu-repo/semantics/publishedVersio

    Arbuscular Mycorrhizal Fungi and Plant Chemical Defence : Effects of Colonisation on Aboveground and Belowground Metabolomes

    Get PDF
    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms
    corecore