25,810 research outputs found
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw
mechanism, on the other it is a challenge to find scenarios capable of
realizing it. In this work we propose a scenario, based on the framework of
R-parity violation, that realizes minimally the supersymmetric inverse seesaw
mechanism. In it the energy scale parameters involved in the mechanism are
recognized as the vacuum expectation values of the scalars that compose the
singlet superfields and . We develop also the scalar sector
of the model and show that the Higgs mass receives a new tree-level
contribution that, when combined with the standard contribution plus loop
correction, is capable of attaining GeV without resort to heavy stops.Comment: Minor modification of the text. Final version to be published in PL
Using presence-absence data to establish reserve selection procedures that are robust to temporal species turnover
Previous studies suggest that a network of nature reserves with maximum efficiency (obtained by selecting the minimum area such that each species is represented once) is likely to be insufficient to maintain species in the network over time. Here, we test the performance of three selection strategies which require presence-absence data, two of them previously proposed (multiple representations and selecting an increasing percentage of each species' range) and a novel one based on selecting the site where each species has exhibited a higher permanence rate in the past. Multiple representations appear to be a safer strategy than selecting a percentage of range because the former gives priority to rarer species while the latter favours the most widespread.
The most effective strategy was the one based on the permanence rate, indicating that the robustness of reserve networks can be improved by adopting reserve selection procedures that integrate information about the relative value of sites. This strategy was also very efficient, suggesting that the investment made in the monitoring schemes may be compensated for by a lower cost in reserve acquisition
Regression analysis with missing data and unknown colored noise: application to the MICROSCOPE space mission
The analysis of physical measurements often copes with highly correlated
noises and interruptions caused by outliers, saturation events or transmission
losses. We assess the impact of missing data on the performance of linear
regression analysis involving the fit of modeled or measured time series. We
show that data gaps can significantly alter the precision of the regression
parameter estimation in the presence of colored noise, due to the frequency
leakage of the noise power. We present a regression method which cancels this
effect and estimates the parameters of interest with a precision comparable to
the complete data case, even if the noise power spectral density (PSD) is not
known a priori. The method is based on an autoregressive (AR) fit of the noise,
which allows us to build an approximate generalized least squares estimator
approaching the minimal variance bound. The method, which can be applied to any
similar data processing, is tested on simulated measurements of the MICROSCOPE
space mission, whose goal is to test the Weak Equivalence Principle (WEP) with
a precision of . In this particular context the signal of interest is
the WEP violation signal expected to be found around a well defined frequency.
We test our method with different gap patterns and noise of known PSD and find
that the results agree with the mission requirements, decreasing the
uncertainty by a factor 60 with respect to ordinary least squares methods. We
show that it also provides a test of significance to assess the uncertainty of
the measurement.Comment: 12 pages, 4 figures, to be published in Phys. Rev.
- âŠ