22,800 research outputs found

    Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation

    Get PDF
    If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields N^C\hat N^C and S^\hat S. We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125125GeV without resort to heavy stops.Comment: Minor modification of the text. Final version to be published in PL

    Classical integrability of chiral QCD2QCD_{2} and classical curves

    Get PDF
    In this letter, classical chiral QCD2QCD_{2} is studied in the lightcone gauge A−=0A_{-}=0. The once integrated equation of motion for the current is shown to be of the Lax form, which demonstrates an infinite number of conserved quantities. Specializing to gauge group SU(2), we show that solutions to the classical equations of motion can be identified with a very large class of curves. We demonstrate this correspondence explicitly for two solutions. The classical fermionic fields associated with these currents are then obtained.Comment: Final version to appear in Mod. Phys. Lett. A. A reference and two footnotes added. 6 pages revte

    Regression analysis with missing data and unknown colored noise: application to the MICROSCOPE space mission

    Get PDF
    The analysis of physical measurements often copes with highly correlated noises and interruptions caused by outliers, saturation events or transmission losses. We assess the impact of missing data on the performance of linear regression analysis involving the fit of modeled or measured time series. We show that data gaps can significantly alter the precision of the regression parameter estimation in the presence of colored noise, due to the frequency leakage of the noise power. We present a regression method which cancels this effect and estimates the parameters of interest with a precision comparable to the complete data case, even if the noise power spectral density (PSD) is not known a priori. The method is based on an autoregressive (AR) fit of the noise, which allows us to build an approximate generalized least squares estimator approaching the minimal variance bound. The method, which can be applied to any similar data processing, is tested on simulated measurements of the MICROSCOPE space mission, whose goal is to test the Weak Equivalence Principle (WEP) with a precision of 10−1510^{-15}. In this particular context the signal of interest is the WEP violation signal expected to be found around a well defined frequency. We test our method with different gap patterns and noise of known PSD and find that the results agree with the mission requirements, decreasing the uncertainty by a factor 60 with respect to ordinary least squares methods. We show that it also provides a test of significance to assess the uncertainty of the measurement.Comment: 12 pages, 4 figures, to be published in Phys. Rev.

    Bounds on the Simplest Little Higgs Model Mass Spectrum Through Z Leptonic Decay

    Full text link
    We derive the leptonic neutral current in the simplest little Higgs model and compute the contribution of the model to the decay width Z→e+e−Z \to e^+e^-. Using the precision electroweak data we obtain a strong lower bound f≥5.6f\geq 5.6 TeV at 95% C.L. on the characteristic energy scale of the model. It results in a lower bound for the new gauge bosons W′±W^{\prime\pm} and Z′Z^{\prime} as being MW′±≥2.6M_{W^{\prime\pm}}\geq 2.6 TeV and MZ′≥3.1M_{Z^{\prime}}\geq 3.1 TeV, respectively. We also present the allowed values of the k=f1/f2k=f_1/f_2 which is the parameter relating the two vacuum expectation values of the scalar triplets in the model, and the μ\mu parameter of a quadratic term, involving the triplets, necessary to provide an acceptable mass range for the standard Higgs boson.Comment: New references added, 13 pages. Version to be publishe
    • …
    corecore