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If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is 
a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the 
framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. 
In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation 
values of the scalars that compose the singlet superfields N̂C and Ŝ . We develop also the scalar sector 
of the model and show that the Higgs mass receives a new tree-level contribution that, when combined 
with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to 
heavy stops.
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1. Introduction

A current exciting challenge in particle physics is the explana-
tion of the smallness of the neutrino masses through new physics 
at TeV scale. In this regard, the inverse seesaw mechanism (ISS) [1]
became the paradigm of successful TeV scale seesaw mechanism. 
Its minimal implementation requires the introduction to the elec-
troweak standard model (SM) of two sets of three neutral fermion 
singlets, N = (N1 , N2 , N3) and S = (S1 , S2 , S3), composing the 
following mass terms in the flavor basis,

Lmass ⊃ ν̄MD N + N̄ MN S + 1

2
S̄CμN S + h.c., (1)

where ν = (ν1 , ν2 , ν3) is the set of standard neutrinos. In the ba-
sis (ν , NC , S) the neutrino mass may be put in the following 9 ×9
matrix form,

Mν =
⎛
⎝ 0 MD 0

MT
D 0 MN

0 MT
N μN

⎞
⎠ . (2)

In the regime μN << MD < MN , the mechanism provides mν =
MT

D M−1
N μN(MT

N )−1MD for the mass matrix of the standard neutri-
nos. Taking MD at electroweak scale, MN at TeV and μN at keV 
scale, the mechanism provides standard neutrinos at eV scale. The 
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new set of fermion singlets (N , S) develop mass at MN scale and 
may be probed at the LHC.

The challenge concerning the ISS mechanism is to find scenar-
ios that realize it. This means to propose models that generate the 
mass terms in Eq. (1). In this regard, as the ISS mechanism works 
in the TeV scale, it seems to be natural to look for realization of 
the ISS mechanism in the framework of theories that we expect 
will manifest at TeV scale [2,3], which is the case of supersymme-
try (SUSY). Thus it seems to be interesting to look for scenarios 
that realize the ISS mechanism in the context of SUSY [4–6].

We know already that a natural way of obtaining small neu-
trino mass in the context of the MSSM is to consider that R-parity, 
R ≡ (−1)2S+3(B−L) , is violated through bilinear terms like μi L̂i Ĥu
in the superpotential [7]. Thus we wonder if R-parity violation 
(RPV) is an interesting framework for the realization of the SUSYISS 
mechanism. For this, we implement the SUSYISS mechanism in a 
framework where R-parity and lepton number are violated explic-
itly but baryon number is conserved in a way that we call the 
minimal realization of the SUSYISS mechanism once the neces-
sary set of superfields required to realize it is the original one, 
N̂C

i and Ŝ i , only.
Moreover, it has been extensively discussed that the minimal 

supersymmetric standard model (MSSM) faces difficulties in ac-
commodating a Higgs of mass of 125 GeV, as discovered by ATLAS 
and CMS [8] while keeping the principle of naturalness [9]. This is 
so because, at tree level, the MSSM predicts a Higgs with a mass 
whose value cannot exceed 91 GeV. Thus robust loop corrections 
are necessary in order to lift this value to 125 GeV. Consequently 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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stops with mass far above 1 TeV are required. To accept this is 
to put the naturalness principle aside. We show that the SUSYISS 
mechanism developed here accommodates a 125 GeV Higgs mass 
without resort to robust loop corrections.

2. The mechanism

The supersymmetric version of the ISS (SUSYISS) mechanism [4]
requires the assumption of two sets of three singlet superfields 
N̂C

i , Ŝ i (i = 1, 2, 3) composing, with the MSSM superfields, L̂T
i =

(ν̂i , êi)
T , Ĥ T

d = (Ĥ−
d , Ĥ0

d)T , Ĥ T
u = (Ĥ+

u , Ĥ0
u)T , the following ex-

tra terms in the superpotential, W ⊃ L̂ Ĥu N̂C + ŜMN N̂C + 1
2 ŜμN Ŝ . 

A successful extension of the MSSM that realizes the SUSYISS 
mechanism must generate these terms. This would be an inter-
esting result in particle physics since we would be providing an 
origin for the energy scales MN and μN [5].

The mechanism we propose here is minimal in the sense that 
it requires the addition to the MSSM of the two canonical singlet 
superfields N̂C

i and Ŝ i , only. Moreover, we impose that the super-
potential be invariant under the following set of discrete symme-
tries, Z3 ⊗ Z2, according to the following transformation: under Z3
the transformations are,

( Ŝ i , N̂C
i , êC

i ) → w( Ŝ i , NC
i , êC

i ), L̂i → w2 L̂i, (3)

with w = expi2π/3. Under Z2 we have, Ŝ i → − Ŝ i , with all the re-
maining superfields transforming trivially by Z3 ⊗ Z2.

Thus the superpotential of the SUSYISS mechanism we propose 
here involves the following terms,

Ŵ = μĤa
u Ĥda + Y ij

u εab Q̂ a
i Ĥb

uûc
j + Y ij

d Q̂ a
i Ĥb

dd̂c
j + Y ij

e L̂a
i Ĥb

dêc
j

+ Y ij
ν εab L̂a

i Ĥb
u N̂c

i + 1

2
λ

i jk
s N̂c

i Ŝ j Ŝk + 1

3
λ

i jk
v N̂c

i N̂c
j N̂c

k, (4)

where a , b are SU (2) indices and i and j are generation indices. 
Q̂ i , ûc

i , d̂c
i and êc

i are the standard superfields of the MSSM. Per-
ceive that the Z3 ⊗ Z2 symmetry permits that lepton number as 
well as R-parity be explicitly violated in this model by terms in 
the superpotential that involve the singlet superfields N̂C

i and Ŝ i , 
only.

Now we make an important assumption. We assume that the 
scalars that compose the superfields N̂C

i and Ŝ i develop nonzero 
vacuum expectation value (VEV), 〈 S̃〉 = v Si and 〈ÑC

i 〉 = v Ni , respec-
tively. This assumption provides the source of the canonical mass 
terms MN and μN of the SUSYISS mechanism. Note that, from the 
last two terms in the superpotential above, we have that the VEV 
of the scalar S̃ becomes the source of the mass scale MN while the 
VEV of the scalar ÑC becomes the source of the mass scale μN . In 
other words, the superpotential above together with the assump-
tion that the scalars N̂C

i and Ŝ i develop non zero VEVs has the 
required ingredients to realize the SUSYISS mechanism.

Another important point of the model is to discuss the possible 
values v Si and v Ni may take. For this we have to obtain the poten-
tial of the model. The soft breaking sector will play an important 
role in the form of the potential.

The most general soft breaking sector of our interest involves 
the following terms,

−Lsoft = M2
Q ij

Q̃ a
i

∗
Q̃ a

j + M2
uc

i j
ũc

i

∗
ũc

j + M2
dc

i j
d̃c

i

∗
d̃c

j

+ M2
Li j

L̃a
i

∗
L̃a

j + M2
ec

i j
ẽc

i

∗
ẽc

j + M2
hu

Ha∗
u Ha

u

+ M2
hd

Ha∗
d Ha

d + M2
Ñi

Ñi
∗C

ÑC
i + M2

S̃ i
S̃∗

i S̃ i

− [(Au Yu)i j εab Q̃ a Hb
uũc + (AdYd)i j Q̃ a Had̃c
i j i d j
+ (Ae Ye)i j L̃a
i Ha

dẽc
j + h.c.] − [BμHa

u Ha
d + h.c.]

+ 1

2

(
M3λ̃3λ̃3 + M2λ̃2λ̃2 + M1λ̃1λ̃1 + h.c.

)
+ (A y Yν)i jεab L̃a

i Hb
u Ñ∗C

j

+ [1

2
(Asλs)

i jk Ñ∗C
i S̃ j S̃k + 1

3
(Avλv)i jk Ñ∗C

i Ñ∗C
j Ñ∗C

k

+ h.c.]. (5)

Note that the last two trilinear terms violate explicitly lepton num-
ber and the energy scale parameters As and Av characterize such 
violation.

A common assumption in developing ISS mechanisms it to as-
sume that the new neutral singlet fermions are degenerated in 
masses and self-couplings. However, for our case here, it seems to 
be more convenient, instead of considering the degenerated case, 
to consider the case of only one generation of superfields. The ex-
tension for the case of three generations is straightforward and the 
results are practically the same.

The potential of the model is composed by the terms V =
V sof t + V D + V F . The soft term, V F , is given above in Eq. (5). The 
relevant contributions to V D are,

V D = 1

8
(g2 + g′2)(ν̃ν̃∗ + H0

d H0∗
d − H0

u H0∗
u )2. (6)

In what concerns the F-term, the relevant contributions are 
given by the following terms,

V F =
∣∣∣∣∣ ∂Ŵ

∂ Ĥ0
u

∣∣∣∣∣
2

Hu

+
∣∣∣∣∣∣
∂Ŵ

∂ Ĥ0
d

∣∣∣∣∣∣
2

Hd

+
∣∣∣∣∣∂Ŵ

∂ν̂

∣∣∣∣∣
2

ν̃

+
∣∣∣∣∣ ∂Ŵ

∂ N̂C

∣∣∣∣∣
2

Ñ

+
∣∣∣∣∣∂Ŵ

∂ Ŝ L

∣∣∣∣∣
2

S̃

= μ2
∣∣∣H0

u

∣∣∣2 + μ2
∣∣∣H0

d

∣∣∣2 + Y 2
ν

∣∣∣ÑC
∣∣∣2 ∣∣ν̃∣∣2 + Y vμH0∗

d ÑC∗ν̃

+ Y 2
ν

∣∣∣H0
u

∣∣∣2 ∣∣ν̃∣∣2 + 1

4
λ2

s

∣∣∣ S̃
∣∣∣4 + 4λ2

v

∣∣∣ÑC
∣∣∣4 + λ2

s

∣∣∣ÑC
∣∣∣2 ∣∣∣ S̃

∣∣∣2

+ Yνλs H0
u ν̃ S̃∗2

2
+ 2Yνλv

∣∣∣ÑC
∣∣∣2

H0
u ν̃ + Y 2

ν

∣∣∣ÑC
∣∣∣2 ∣∣∣H0

u

∣∣∣2

+ λsλv

∣∣∣ÑC
∣∣∣2

S̃2 + h.c. (7)

With the potential of the model in hand, we are ready to 
obtain the set of constraint equations for the neutral scalars 
H0

u , H0
d , ν̃ , S̃ , ÑC ,

vu

(
M2

hu
+ μ2 + 1

4
(g2 + g′2)(v2

u − v2
d − v2

ν) + Y 2
ν v2

N + Y 2
ν v2

ν

)

−Bμvd + 1

2
Yνλs vν v2

S + Yν A y vν v N + 2Yνλv vν v2
N = 0,

vd

(
M2

hd
+ μ2 − 1

4
(g2 + g′2)(v2

u − v2
d − v2

ν)

)
−Bμvu + Yνμvν v N = 0,

vν

(
M2

ν̃ + 1

4
(g2 + g′2)(v2

ν + v2
d − v2

u) + Y 2
ν v2

u + Y 2
ν v2

N

)

+1

2
λsYν vu v2

S + Yν A y vu v N + 2Yνλv vu v2
N + Yνμvd v N = 0,

M2
S̃
+ λsYν vu vν + 1

2
λ2

s v2
S + λs As v N + λ2

s v2
N + 2λsλv v2

N = 0,

v N
(
M2

Ñ
+ Y 2

ν v2
u + λ2

s v2
S + 3λv Av v N + 8λ2

v v2
N + 4λv Yν vu vν

+2λvλs v2
S + Y 2

ν v2
ν

) + Yν vν(A y vu + μvd) + 1
Asλs v2

S = 0. (8)

2
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Let us first focus on the third relation in the equation above. 
Observe that the dominant term inside the parenthesis is M2

ν̃
. Out-

side the parenthesis, on considering for while that v N < v S , the 
dominant term is 1

2 λsYν vu v2
S . In view of this, from the third rela-

tion above we have that,

vν ≈ −1

2

λsYν vu v2
S

M2
ν̃

. (9)

For Mν̃ > v S , we have vν < vu,d,S , as expected.
Let us now focus on the fifth relation of the Eq. (8). The dom-

inant term inside the parenthesis is M2
Ñ

, while outside the paren-

thesis the dominant term is 1
2 Asλs v2

S . Thus the fifth relation pro-
vides,

v N ≈ −1

2

Asλs v2
S

M2
Ñ

. (10)

This expression for v N is similar to the vν case and suggests that 
v N is also small.

Let us now focus on the forth relation. Taking vν , v N � v S , we 
have that the dominant terms in that relation are,

M2
S̃
+ 1

2
λ2

s v2
S = 0. (11)

Perceive that M S dictates the value of v S . As the neutral singlet 
scalar S̃ belongs to an extension of the MSSM, then it is reasonable 
to expect that its soft mass term M S lies at TeV scale. Consequently 
v S must assume values around TeV. In regard to the first and sec-
ond relations they control the standard VEVs vu and vd .

Let us return to the expression to v N in Eq. (10). As the neutral 
singlet scalar Ñ also belongs to an extension of the MSSM, then 
it is reasonable to expect that its soft mass term MÑ lies at TeV 
scale, too. In this case perceive that the value of v N get dictated 
by the soft trilinear term As . Thus a small v N means a tiny As . As 
As is a trilinear soft breaking term, then it must be generated by 
some spontaneous SUSY breaking scheme. The problem is that we 
do not know how SUSY is spontaneously broken. Thus there is no 
way to infer exactly the value of As . Moreover, note that As is a 
soft trilinear term involving only neutral scalar singlets by MSSM 
which turns its estimation even more complex. We argue here that 
it is somehow natural to expect that such terms be small.

For this we have to think in terms of spontaneous SUSY break-
ing schemes. For example, in the framework of gauge mediated 
supersymmetry breaking (GMSB) all soft trilinear terms are natu-
rally suppressed once they arise from loops. In our case the new 
singlets are sterile by the standard gauge group. The minimal sce-
nario where such soft trilinear terms could arise would be one 
that involve the GMSM of the B-L gauge extension of the MSSM. 
To build such extension and evaluate As in such a scenario is out 
of the scope of this paper. However, whatever be the case, in the 
framework of GMSB scheme As must be naturally small and conse-
quently v N , too. In this point we call the attention to the fact that 
the idea behind the ISS mechanism is that lepton number is ex-
plicitly violated at low energy scale. This suggests that the GMSB 
seems to be the adequate spontaneous SUSY breaking scheme to 
be adopted in realizing SUSYISS mechanism.

Let us discuss the case of gravity mediated supersymmetry 
breaking. As in the ISS mechanism lepton number is assumed 
to be explicitly violated at low energy scale, it is expected that 
v N , v S , vν , As , Av are all null at GUT scale. Considering this, the 
authors of Ref. [10] evaluated the running of soft trilinear terms 
involving scalar singlets from GUT to down scales in a different 
realization of the SUSYISS model. As a result they obtained that 
these terms develop small values at electroweak scale. Our case is 
somehow similar to the case of Ref. [10] and it seems reasonable 
to expect that, in the general case of three generations, on do-
ing such evaluation of the running of the soft trilinear terms, our 
mechanism recover the result of Ref. [10]. As we are just present-
ing the idea by means of only one generation, such evaluation of 
the running of As is out of the scope of this work.

Thus it seems to be reasonable to expect that, whatever be 
the spontaneous SUSY breaking scheme adopted, the soft trilinear 
terms that violate explicitly lepton number involving neutral sin-
glet fields as S̃ and Ñ have the tendency to develop small values. 
In what follow we assume that As and Av lies at keV scale.

There is still an issue to consider in respect to the scalar poten-
tial. As can be easily verified, the value of the potential at origin of 
the fields is zero. In order to guarantee that electroweak symmetry 
will be broken, we need the potential in the minimum to be neg-
ative. Taking the constraints in Eq. (8) to eliminate the soft masses 
in the scalar potential, we have,

〈V 〉mim = −1

8

(
g2 + g′ 2

)(
v2
ν + v2

d − v2
u

)2

− Y 2
ν

(
v2
ν v2

N + v2
ν v2

u + v2
u v2

N

)
− λ2

s v2
S v2

N

− 1

4
λ2

s v4
S − A y Yν vν v N vu

− 1

2
Asλs v N v2

S − Avλv v3
N − Yνλs vν vu v2

S

− 4Yνλv vν vu v2
N − 2λsλv v2

N v2
S − 4λ2

v v4
N

− Yνμvν v N vd. (12)

For the magnitudes of VEVs discussed above, the dominant term is 
− 1

4 λ2
s v4

S , which is negative. For the case of one generation consid-
ered here this is a strong evidence of the stability of the potential.

After all these considerations, we are ready to go to the central 
part of this work that is to develop the neutrino sector. For this we 
have, first, to obtain the mass matrix that involves the neutrinos. 
Due to the RPV the gauginos and Higgsinos mix with the neutri-
nos ν , N and S . Considering the basis (λ0, λ3, ψh0

u
, ψh0

d
, ν, Nc, S), 

we obtain the following mass matrix for these neutral fermions,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 g′vu√
2

− g′vd√
2

− g′vν√
2

0 0

0 M2 − gvu√
2

gvd√
2

gvν√
2

0 0
g′vu√

2
− gvu√

2
0 μ Yν v N Yν vν 0

− g′vd√
2

gvd√
2

μ 0 0 0 0

− g′vν√
2

gvν√
2

Yν v N 0 0 Yν vu 0

0 0 Yν vν 0 Yν vu 6λv v N λs v S

0 0 0 0 0 λs v S λs v N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where M1 e M2 are the standard soft breaking terms of the gaugi-
nos. We remark that on considering the hierarchy v N < vν < vd <

vu < v S the bottom right 3 ×3 block of this matrix, which involves 
only the neutrinos, decouples from the gauginos and Higgsinos 
sector leaving the neutrinos with the following mass matrix in the 
basis (ν, Nc, S)

Mν ≈
⎛
⎝ 0 Yν vu 0

Yν vu 2λv v N λs v S

0 λs v S λs v N

⎞
⎠ . (14)

For this decoupling to be effective we must have vν of order 
MeV or less. Diagonalization of this mass matrix implies that the 
lightest neutrino, which is predominantly the standard one, ν , get 
the following mass expression,
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mν ≈ Y 2
ν

λs

v2
u

v2
S

v N . (15)

This is exactly the mass expression of the ISS mechanism. For 
v S around TeV and v N around keV we obtain neutrinos at eV scale 
for vu at electroweak scale. In the case of three generations the 
pattern of the neutrino masses will be determined by Y ij

ν .
To demonstrate the validity of these approximations we can 

compute the mass eigenvalues from the full matrix in (13). For 
typical values of the supersymmetric parameters and v S ∼ 10 TeV, 
v N ∼ 10 keV, vν ∼ 1 MeV and Yν ∼ λs = 0.21, we have the follow-
ing order of magnitude for the mass eigenvalues (∼ TeV, ∼ TeV, 
∼ 102 GeV, ∼ 102 GeV, ∼ 10−1 eV, ∼ TeV, ∼ TeV), where the 
lightest particle is exclusively the standard neutrino. This result is 
encouraging and indicates that RPV is an interesting framework to 
realize the SUSYISS mechanism.

We end this section making a comparison of the SUSYISS de-
veloped here with the μνSSM in Ref. [11]. This model resorts 
to R-parity violation to solve the μ problem. However neutrino 
masses at sub-eV scale require considerable amount of fine tuning 
of the Yukawa couplings. We stress that, in spite of the fact that 
the SUSYISS model contains the particle content of the μνSSM, un-
fortunately it does not realize the μνSSM. This is so because if we 
allow a term like Ŝ Ĥu Ĥd in the superpotential in Eq. (4), as conse-
quence the entries ψh0

d
S and ψh0

u
S in the mass matrix in Eq. (13)

would develop robust values which jeopardize the realization of 
the ISS mechanism.

3. The mass of the Higgs

Now, let us focus on the scalar sector of the model. We re-
strict our interest in checking if the model may accommodates a 
125 GeV Higgs mass without resorting to tight loop contributions. 
For the case of one generation the model involves five neutral 
scalars whose mass terms compose a 5 × 5 mass matrix that we 
consider in the basis (Hu , Hd , ̃ν , Ñ , S̃). We do not show such a 
mass matrix here because of the complexity of their entries. In-
stead of dealing with a 5 × 5 mass matrix, which is very difficult 
to handle analytically, we make use of a result that says that an 
upper bound on the mass of the lightest scalar, which we consider 
as the Higgs, can be obtained by computing the eigenvalues of the 
2 × 2 submatrix in the upper left corner of this 5 × 5 mass matrix 
[12]. This is a common procedure adopted in such cases which give 
us an idea of the potential of the model to generate the 125 GeV 
Higgs mass.

The dominant terms of this 2 × 2 submatrix are given by,

M2
2×2

≈
(

Bμ cot(β) + M2
Z sin2(β) − Yνλs vν

2vu
v2

S −Bμ − M2
Z sin(β) cos(β)

−Bμ − M2
Z sin(β) cos(β) Bμ tan(β) + M2

Z cos2(β)

)
. (16)

We made use of the hierarchy among the VEVs, as discussed above, 
to obtain such a 2 × 2 submatrix. On diagonalizing this 2 × 2 sub-
matrix we obtain the following upper bound on the mass of the 
Higgs,

m2
h ≤ M2

Z cos2(2β) − Yνλs vν

2vu
v2

S . (17)

Note also that Eq. (11) imposes that either M2
S̃

or v2
S is negative. In 

order to the second term in Eq. (17) gives a positive contribution to 
the Higgs mass we take M2

S negative and Yν and λs with opposite 
sign.

What is remarkable in the mass expression in Eq. (17) is that 
the second term provides a robust correction to the Higgs mass 
Fig. 1. Contour plot of mh = 125 GeV in the Yν versusλs plane for ms = 800 GeV
and Xt = 400 GeV where (blue dotted tan(β) = 5), (red dashed tan(β) = 7) and 
(red solid tan(β) = 10). (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

even involving the parameters that dictate the neutrino masses as 
the couplings Yν and λs and the VEV v S . This suggest an interest-
ing connection between neutrino and Higgs mass. For illustrative 
proposals, perceive that for Yν of the same order of λs , vν around 
MeV, vu around 102 GeV and v S of order tens of TeV, the second 
term provides a contribution of tens of GeV to the Higgs mass. 
This contribution is enough to alleviate the pressure on the stop 
masses and their mixing in order to keep valid the principle of 
naturalness.

In order to check the range of values the stop mass and the 
At term may develop in this model, we add to m2

h given above 
the leading 1-loop corrections coming from the MSSM stop terms 
[13],

	m2
h = 3m4

t

4π2 v2

(
log

(
m2

s

m2
t

)
+ X2

t

m2
s

(
1 − X2

t

12m2
s

))
, (18)

where mt = 173.2 GeV is the top mass, v =
√

v2
u + v2

d = 174 GeV

is the VEV of the standard model, Xt ≡ At − μcot(β) is the stop 
mixing parameter and ms ≡ (mt̃1

mt̃2
)1/2 is the SUSY scale (scale of 

superpartners masses) where mt̃ is the stop mass. In the analysis 
done below, we work with degenerated stops and, in all plots, we 
take vν = 1 MeV and v S = 4 × 104 GeV.

Fig. 1 shows possible values for the magnitude of Yν and λs

that provide a Higgs with a mass of 125 GeV. Note that the plot 
tells us that such a mass requires Yν and λs around 10−1. This 
range of values for Yν and λs provides, through Eq. (15), mν ≈
0.1 eV for v S = 10 TeV and v N = 10 keV. Thus neutrino at sub-eV 
scale is compatible with mh = 125 GeV effortlessly.

Fig. 2 tell us that the model yields the desired Higgs mass for 
stop mass and mixing parameters below the TeV scale. Finally, 
Fig. 3 shows that a Higgs of mass of 125 GeV is obtained for a 
broad range of values of tan(β).

Let us discuss a little some phenomenological aspects of the 
SUSYISS mechanism developed here. First of all, observe that the 
aspects of RPV concerning the mixing among neutralinos and neu-
trinos, as well as charginos and charged leptons, are dictated by 
the VEVs vν and v N and the couplings Yν and λs , which are 
both small. The squarks sector is practically unaffected. Thus, with 
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Fig. 2. Contour plot of mh = 125 GeV in the Xt versus ms plane with λs = −0.21, 
Yν = 0.21 (blue dotted tan(β) = 5), (red dashed tan(β) = 7) and (red solid tan(β) =
10). (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)

Fig. 3. Contour plot of mh = 125 GeV in the tan(β) versus ms plane with λs = −0.21, 
Yν = 0.21 (blue dotted Xt = 600 GeV), (red dashed Xt = 700 GeV) and (red solid 
Xt = 800 GeV). (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

relation to these sectors, the phenomenology of the SUSYISS mech-
anism is practically similar to the case of the supersymmetric ver-
sion of the ISS mechanism [4,14]. The signature of the SUSYISS 
mechanism developed here should manifest mainly in the scalar 
sector of the model due to the mixing of the neutral scalars with 
the sneutrinos which will generate Higgs decay channel with lep-
ton flavor violation h → lil j .

In general, as far as we know, this is the first time the ISS 
mechanism is developed in the framework of RPV. Thus many the-
oretical, as well phenomenological aspects of the model proposed 
here must be addressed such as experimental constraints from 
RPV, accelerator physics, analysis of the renormalization group 
equation, spontaneously SUSY breaking schemas, etc., which we 
postpone to a future paper [15]. Moreover, needless to say that 
in SUSY models with RPV the lightest supersymmetric particle is 
not stable which means that neither the neutralino nor sneutrino 
are candidates for dark matter [16] any longer. We would like to 
remark that because of the Z3 symmetry used in the superpoten-
tial above cosmological domain wall problems are expected [17]. 
However, the solution of this problem in the NMSSM as well in 
the μνSSM [11] cases may be applied to our case, too [18].

Finally, concerning the stability of the vacuum, we have to im-
pose that the potential be bounded from below when the scalar 
fields become large in any direction of the space fields and that 
the potential does not present charge and color breaking minima. 
Concerning the latter condition, we do not have to worry about 
this condition here because the new scalar fields associated to the 
superfield singlets, Ŝ and N̂C , are neutrals under electric and color 
charges. Concerning the former issue, the worry arises because at 
large values of the fields the quartic terms dominate the potential. 
Thus we have to guarantee that at large values of the fields the 
potential be positive. Thus we have to worry with the quartic cou-
plings, only. The negative value of λs leads to two negative quartic 
terms. Considering this, on analyzing the potential above, we did 
not find any direction in the field space in which λs negative leads 
to a negative potential. All direction we find involves a set of con-
dition where it is always possible to guarantee that the potential 
be positive at large value of the fields [19]. Moreover, we took λs

negative for convenience. We may arrange the things such that all 
couplings be positive. For example, on taking λs positive, vν in 
Eq. (9) get negative, which guarantee a positive contribution to the 
Higgs masses and that all quartic couplings be positive. However, 
a complete analysis of the stability of the potential is necessary. 
This will be done in [15].

4. Conclusions

In this work we proposed the realization of the SUSYISS model 
in the framework of RPV. The main advantage of such framework 
is that it allows the realization of the SUSYISS model with a min-
imal set of superfield content where the superfields Ŝ and N̂C of 
the minimal implementation are sufficient to realize the model. 
To grasp the important features of the SUSYISS, we restricted our 
work to the case of one generation of superfields. As nice result, 
the canonical mass parameters MN and μN of the SUSYISS mech-
anism are recognized as the VEVs of the scalars S̃ and Ñ that 
compose the superfields Ŝ and N̂C . There is no way to fix the 
values of the VEVs v S and v N . However, it seems plausible that 
v S and v N develop values around TeV and keV scale, respectively. 
Thus, we conclude that RPV seems to be an interesting framework 
for the realization of the SUSYISS mechanism. We recognize that 
in order to establish the model a lot of work have to be done, 
yet. For example, we have to find the spontaneous SUSY break-
ing scheme that better accommodates the mechanism, develop the 
phenomenology of the model and its embedding in GUT schemes. 
We end by saying that the main results of this work are that the 
model proposed here realizes minimally the SUSYISS mechanism 
and provides a 125 GeV Higgs mass respecting the naturalness 
principle.
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