1,045 research outputs found

    ANXA1 (annexin A1)

    Get PDF
    Review on ANXA1 (annexin A1), with data on DNA, on the protein encoded, and where the gene is implicated

    Use of the checkerboard DNA-DNA hybridization technique for bacteria detection in Aedes aegypti (Diptera:Culicidae) (L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of <it>Aedes aegypti</it>-associated bacterial species in larvae, pupae and adults of <it>A. aegypti</it>.</p> <p>Findings</p> <p>Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from <it>A. aegypti </it>single whole individuals and midguts. <it>A. aegypti </it>associated bacterial species were also detected in the midgut of four other insect species, <it>Lutzomyia longipalpis, Drosophila melanogaster</it>, <it>Bradysia hygida </it>and <it>Apis mellifera</it>.</p> <p>Conclusions</p> <p>Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.</p

    Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis

    Get PDF
    © 2010 Cascão et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by sustained synovitis. Recently, several studies have proposed neutrophils and Th17 cells as key players in the onset and perpetuation of this disease. The main goal of this work was to determine whether cytokines driving neutrophil and Th17 activation are dysregulated in very early rheumatoid arthritis patients with less than 6 weeks of disease duration and before treatment (VERA). Methods: Cytokines related to neutrophil and Th17 activation were quantified in the serum of VERA and established RA patients and compared with other very early arthritis (VEA) and healthy controls. Synovial fluid (SF) from RA and osteoarthritis (OA) patients was also analyzed. Results: VERA patients had increased serum levels of cytokines promoting Th17 polarization (IL-1b and IL-6), as well as IL-8 and Th17-derived cytokines (IL-17A and IL-22) known to induce neutrophil-mediated inflammation. In established RA this pattern is more evident within the SF. Early treatment with methotrexate or corticosteroids led to clinical improvement but without an impact on the cytokine pattern. Conclusions: VERA patients already display increased levels of cytokines related with Th17 polarization and neutrophil recruitment and activation, a dysregulation also found in SF of established RA. 0 Thus, our data suggest that a cytokine-milieu favoring Th17 and neutrophil activity is an early event in RA pathogenesis.This work was supported by a grant from Sociedade Portuguesa de Reumatologia/Schering-Plough 2005. RAM and RC were funded by Fundação para a Ciência e a Tecnologia (FCT) SFRH/BD/30247/2006 and SFRH/BD/40513/2007, respectively. MMS-C was funded by Marie Curie Intra-European Fellowship PERG-2008-239422 and a EULAR Young Investigator Award

    Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae

    Get PDF
    Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd

    Coagulase gene polymorphism of Staphylococcus aureus isolated from clinical and sub-clinical bovine mastitis in Isfahan and Chaharmahal va Bakhtiari provinces of Iran

    Get PDF
    Mastitis is a common disease in dairy cattle and is an inflammatory response of the breast tissue to bacterial attack to this tissue. Mastitis causes considerable loss to the dairy industry, among the several bacterial pathogens that can cause mastitis; Staphylococcus aureus is probably the most lethal agent because it causes chronic and deep infection in the mammary glands that is extremely difficult to cure. Several virulence factors including coagulase gene are produced by S. aureus and may contribute to its pathogenicity. This study was conducted to investigate the coagulase gene polymorphism of S. aureus isolated from clinical and sub-clinical bovine mastitis milk samples in Isfahan and Chaharmahal va Bakhtiari provinces of Iran. Amplification of the coagulase gene from 86 S. aureus strains isolates by specific primers showed 31 specimens contained 970 bp fragment, and 11 strains contained 730 bp fragment relevant to coa gene (coagulase) in PCR. After enzymatic digestion with AluI, 31 specimens contained three bands: 320, 490, and 160 bp (genotype I) and 11 specimens contained two bands: 490 and 240 bp (genotype VIII) in the RFLP

    New insights for diagnosis of Pineapple Fusariosis by MALDI-TOF MS technique

    Get PDF
    Fusarium is one of the most economically important fungal genus, since it includes many pathogenic species which cause a wide range of plant diseases. Morphological or molecular biology identification of Fusarium species is a limiting step in the fast diagnosis and treatment of plant disease caused by these fungi. Mass spectrometry by matrix-assisted laser/desorption ionisation-time-of-flight (MALDI-TOF)-based fingerprinting approach was applied to the fungal growth monitoring and direct detection of strain Fusarium guttiforme E-480 inoculated in both pineapple cultivars Pérola and Imperial side shoots, that are susceptible and resistant, respectively, to this fungal strain. MALDI-TOF MS technique was capable to detect fungal molecular mass peaks in the susceptible pineapple stem side shoot tissue. It is assumed that these molecular masses are mainly constituted by ribosomal proteins. MALDI-TOF-based fingerprinting approach has herein been demonstrated to be sensitive and accurate for the direct detection of F. guttiforme E-480 molecular masses on both susceptible and resistant pineapple side stem free of any pre-treatment. According to the results obtained, the changing on molecular mass peaks of infected susceptible pineapple tissue together with the possibility of fungal molecular masses analysis into this pineapple tissue can be a good indication for an early diagnosis by MALDI-TOF MS of pineapple fusariosis
    • …
    corecore